These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 9270055)
1. Age-dependent differences in survival of striatal somatostatin-NPY-NADPH-diaphorase-containing interneurons versus striatal projection neurons after intrastriatal injection of quinolinic acid in rats. Figueredo-Cardenas G; Chen Q; Reiner A Exp Neurol; 1997 Aug; 146(2):444-57. PubMed ID: 9270055 [TBL] [Abstract][Full Text] [Related]
2. Relative survival of striatal projection neurons and interneurons after intrastriatal injection of quinolinic acid in rats. Figueredo-Cardenas G; Anderson KD; Chen Q; Veenman CL; Reiner A Exp Neurol; 1994 Sep; 129(1):37-56. PubMed ID: 7925841 [TBL] [Abstract][Full Text] [Related]
3. Relative resistance of striatal neurons containing calbindin or parvalbumin to quinolinic acid-mediated excitotoxicity compared to other striatal neuron types. Figueredo-Cardenas G; Harris CL; Anderson KD; Reiner A Exp Neurol; 1998 Feb; 149(2):356-72. PubMed ID: 9500958 [TBL] [Abstract][Full Text] [Related]
4. Enkephalinergic striatal projection neurons become less affected by quinolinic acid than substance P-containing striatal projection neurons as rats age. Sun Z; Chen Q; Reiner A Exp Neurol; 2003 Dec; 184(2):1034-42. PubMed ID: 14769398 [TBL] [Abstract][Full Text] [Related]
5. Colocalization of somatostatin, neuropeptide Y, neuronal nitric oxide synthase and NADPH-diaphorase in striatal interneurons in rats. Figueredo-Cardenas G; Morello M; Sancesario G; Bernardi G; Reiner A Brain Res; 1996 Oct; 735(2):317-24. PubMed ID: 8911672 [TBL] [Abstract][Full Text] [Related]
6. Differential sensitivity of neuropeptide Y, somatostatin and NADPH-diaphorase containing neurons in rat cortex and striatum to quinolinic acid. Boegman RJ; Parent A Brain Res; 1988 Apr; 445(2):358-62. PubMed ID: 2897226 [TBL] [Abstract][Full Text] [Related]
7. Differential sparing of somatostatin-neuropeptide Y and cholinergic neurons following striatal excitotoxin lesions. Beal MF; Kowall NW; Swartz KJ; Ferrante RJ; Martin JB Synapse; 1989; 3(1):38-47. PubMed ID: 2563916 [TBL] [Abstract][Full Text] [Related]
8. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. Beal MF; Brouillet E; Jenkins BG; Ferrante RJ; Kowall NW; Miller JM; Storey E; Srivastava R; Rosen BR; Hyman BT J Neurosci; 1993 Oct; 13(10):4181-92. PubMed ID: 7692009 [TBL] [Abstract][Full Text] [Related]
10. Transient global ischemia in rats yields striatal projection neuron and interneuron loss resembling that in Huntington's disease. Meade CA; Figueredo-Cardenas G; Fusco F; Nowak TS; Pulsinelli WA; Reiner A Exp Neurol; 2000 Dec; 166(2):307-23. PubMed ID: 11085896 [TBL] [Abstract][Full Text] [Related]
11. Characterization of striatal cultures with the effect of QUIN and NMDA. Kumar U Neurosci Res; 2004 May; 49(1):29-38. PubMed ID: 15099701 [TBL] [Abstract][Full Text] [Related]
12. Specific reactions of different striatal neuron types in morphology induced by quinolinic acid in rats. Feng Q; Ma Y; Mu S; Wu J; Chen S; Ouyang L; Lei W PLoS One; 2014; 9(3):e91512. PubMed ID: 24632560 [TBL] [Abstract][Full Text] [Related]
13. Expression of NMDA receptor-1 (NR1) and huntingtin in striatal neurons which colocalize somatostatin, neuropeptide Y, and NADPH diaphorase: a double-label histochemical and immunohistochemical study. Kumar U; Asotra K; Patel SC; Patel YC Exp Neurol; 1997 Jun; 145(2 Pt 1):412-24. PubMed ID: 9217077 [TBL] [Abstract][Full Text] [Related]
14. Organotypic slice cultures of the rat striatum: an immunocytochemical, histochemical and in situ hybridization study of somatostatin, neuropeptide Y, nicotinamide adenine dinucleotide phosphate-diaphorase, and enkephalin. Ostergaard K; Finsen B; Zimmer J Exp Brain Res; 1995; 103(1):70-84. PubMed ID: 7615039 [TBL] [Abstract][Full Text] [Related]
15. Administration of recombinant human Activin-A has powerful neurotrophic effects on select striatal phenotypes in the quinolinic acid lesion model of Huntington's disease. Hughes PE; Alexi T; Williams CE; Clark RG; Gluckman PD Neuroscience; 1999; 92(1):197-209. PubMed ID: 10392842 [TBL] [Abstract][Full Text] [Related]
16. Intrastriatal injections of quinolinic acid or kainic acid: differential patterns of cell survival and the effects of data analysis on outcome. Roberts RC; Ahn A; Swartz KJ; Beal MF; DiFiglia M Exp Neurol; 1993 Dec; 124(2):274-82. PubMed ID: 8287926 [TBL] [Abstract][Full Text] [Related]
17. The IGF-I amino-terminal tripeptide glycine-proline-glutamate (GPE) is neuroprotective to striatum in the quinolinic acid lesion animal model of Huntington's disease. Alexi T; Hughes PE; van Roon-Mom WM; Faull RL; Williams CE; Clark RG; Gluckman PD Exp Neurol; 1999 Sep; 159(1):84-97. PubMed ID: 10486177 [TBL] [Abstract][Full Text] [Related]
18. Systemic or local administration of azide produces striatal lesions by an energy impairment-induced excitotoxic mechanism. Brouillet E; Hyman BT; Jenkins BG; Henshaw DR; Schulz JB; Sodhi P; Rosen BR; Beal MF Exp Neurol; 1994 Oct; 129(2):175-82. PubMed ID: 7525331 [TBL] [Abstract][Full Text] [Related]
19. Short-term lithium treatment promotes neuronal survival and proliferation in rat striatum infused with quinolinic acid, an excitotoxic model of Huntington's disease. Senatorov VV; Ren M; Kanai H; Wei H; Chuang DM Mol Psychiatry; 2004 Apr; 9(4):371-85. PubMed ID: 14702090 [TBL] [Abstract][Full Text] [Related]
20. Distribution and relative abundance of neurons in the pigeon forebrain containing somatostatin, neuropeptide Y, or both. Anderson KD; Reiner A J Comp Neurol; 1990 Sep; 299(3):261-82. PubMed ID: 1977774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]