These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 9270058)
1. The effect of chronic haloperidol treatment on dendritic spines in the rat striatum. Kelley JJ; Gao XM; Tamminga CA; Roberts RC Exp Neurol; 1997 Aug; 146(2):471-8. PubMed ID: 9270058 [TBL] [Abstract][Full Text] [Related]
2. Ultrastructural correlates of haloperidol-induced oral dyskinesias in rat striatum. Roberts RC; Gaither LA; Gao XM; Kashyap SM; Tamminga CA Synapse; 1995 Jul; 20(3):234-43. PubMed ID: 7570355 [TBL] [Abstract][Full Text] [Related]
3. Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia. Rogoza RM; Fairfax DF; Henry P; N-Marandi S; Khan RF; Gupta SK; Mishra RK Synapse; 2004 Dec; 54(3):156-63. PubMed ID: 15452862 [TBL] [Abstract][Full Text] [Related]
4. The relationship between dopamine D2 receptor occupancy and the vacuous chewing movement syndrome in rats. Turrone P; Remington G; Kapur S; Nobrega JN Psychopharmacology (Berl); 2003 Jan; 165(2):166-71. PubMed ID: 12417967 [TBL] [Abstract][Full Text] [Related]
5. Dopaminergic synapses in the matrix of the ventrolateral striatum after chronic haloperidol treatment. Roberts RC; Force M; Kung L Synapse; 2002 Aug; 45(2):78-85. PubMed ID: 12112400 [TBL] [Abstract][Full Text] [Related]
6. Ultrastructural correlates of haloperidol-induced oral dyskinesias in rats: a study of unlabeled and enkephalin-labeled striatal terminals. Roberts RC; Lapidus B J Neural Transm (Vienna); 2003 Sep; 110(9):961-75. PubMed ID: 12938022 [TBL] [Abstract][Full Text] [Related]
7. Glycine and D-cycloserine attenuate vacuous chewing movements in a rat model of tardive dyskinesia. Shoham S; Mazeh H; Javitt DC; Heresco-Levy U Brain Res; 2004 Apr; 1004(1-2):142-7. PubMed ID: 15033429 [TBL] [Abstract][Full Text] [Related]
8. Oral dyskinesias and morphological changes in rat striatum during long-term haloperidol administration. Andreassen OA; Meshul CK; Moore C; Jørgensen HA Psychopharmacology (Berl); 2001 Aug; 157(1):11-9. PubMed ID: 11512038 [TBL] [Abstract][Full Text] [Related]
9. Failure to down regulate NMDA receptors in the striatum and nucleus accumbens associated with neuroleptic-induced dyskinesia. Hamid EH; Hyde TM; Baca SM; Egan MF Brain Res; 1998 Jun; 796(1-2):291-5. PubMed ID: 9689480 [TBL] [Abstract][Full Text] [Related]
10. Correlation of vacuous chewing movements with morphological changes in rats following 1-year treatment with haloperidol. Meshul CK; Andreassen OA; Allen C; Jørgensen HA Psychopharmacology (Berl); 1996 Jun; 125(3):238-47. PubMed ID: 8815959 [TBL] [Abstract][Full Text] [Related]
11. Localized changes in GABA receptor-gated chloride channel in rat brain after long-term haloperidol: relation to vacuous chewing movements. Sasaki T; Kennedy JL; Nobrega JN Synapse; 1997 Jan; 25(1):73-9. PubMed ID: 8987150 [TBL] [Abstract][Full Text] [Related]
12. Persistent alterations in dendrites, spines, and dynorphinergic synapses in the nucleus accumbens shell of rats with neuroleptic-induced dyskinesias. Meredith GE; De Souza IE; Hyde TM; Tipper G; Wong ML; Egan MF J Neurosci; 2000 Oct; 20(20):7798-806. PubMed ID: 11027244 [TBL] [Abstract][Full Text] [Related]
13. Novel oral drug administration in an animal model of neuroleptic therapy. Schleimer SB; Johnston GA; Henderson JM J Neurosci Methods; 2005 Aug; 146(2):159-64. PubMed ID: 16054505 [TBL] [Abstract][Full Text] [Related]
15. Oral Dyskinesias and striatal lesions in rats after long-term co-treatment with haloperidol and 3-nitropropionic acid. Andreassen OA; Ferrante RJ; Beal MF; Jørgensen HA Neuroscience; 1998 Dec; 87(3):639-48. PubMed ID: 9758230 [TBL] [Abstract][Full Text] [Related]
16. Effects of haloperidol on cholinergic striatal interneurons: relationship to oral dyskinesias. Kelley JJ; Roberts RC J Neural Transm (Vienna); 2004 Aug; 111(8):1075-91. PubMed ID: 15254795 [TBL] [Abstract][Full Text] [Related]
17. Alterations in striatal neuropeptide Y system activity of rats with haloperidol-induced behavioral supersensitivity. Obuchowicz E; Krysiak R; Wieronska JM; Smialowska M; Herman ZS Neuropeptides; 2005 Oct; 39(5):515-23. PubMed ID: 16154634 [TBL] [Abstract][Full Text] [Related]
18. Mixture in the distribution of haloperidol-induced oral dyskinesias in the rat supports an animal model of tardive dyskinesia. Hashimoto T; Ross DE; Gao XM; Medoff DR; Tamminga CA Psychopharmacology (Berl); 1998 May; 137(2):107-12. PubMed ID: 9629996 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of N-methyl-D-aspartate (NMDA) immunoreactivity in residual dendritic spines in the caudate-putamen nucleus after chronic haloperidol administration. Rodríguez JJ; Pickel VM Synapse; 1999 Sep; 33(4):289-303. PubMed ID: 10421710 [TBL] [Abstract][Full Text] [Related]
20. Valeriana officinalis does not alter the orofacial dyskinesia induced by haloperidol in rats: role of dopamine transporter. Fachinetto R; Villarinho JG; Wagner C; Pereira RP; Avila DS; Burger ME; Calixto JB; Rocha JB; Ferreira J Prog Neuropsychopharmacol Biol Psychiatry; 2007 Oct; 31(7):1478-86. PubMed ID: 17669571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]