These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 9271491)
21. Structures of the N(omega)-hydroxy-L-arginine complex of inducible nitric oxide synthase oxygenase dimer with active and inactive pterins. Crane BR; Arvai AS; Ghosh S; Getzoff ED; Stuehr DJ; Tainer JA Biochemistry; 2000 Apr; 39(16):4608-21. PubMed ID: 10769116 [TBL] [Abstract][Full Text] [Related]
22. Formation of nitric oxide synthase-iron(II) nitrosoalkane complexes: severe restriction of access to the iron(II) site in the presence of tetrahydrobiopterin. Renodon A; Boucher JL; Wu C; Gachhui R; Sari MA; Mansuy D; Stuehr D Biochemistry; 1998 May; 37(18):6367-74. PubMed ID: 9572852 [TBL] [Abstract][Full Text] [Related]
23. Structure of tetrahydrobiopterin tunes its electron transfer to the heme-dioxy intermediate in nitric oxide synthase. Wei CC; Wang ZQ; Arvai AS; Hemann C; Hille R; Getzoff ED; Stuehr DJ Biochemistry; 2003 Feb; 42(7):1969-77. PubMed ID: 12590583 [TBL] [Abstract][Full Text] [Related]
24. Role of the interdomain linker probed by kinetics of CO ligation to an endothelial nitric oxide synthase mutant lacking the calmodulin binding peptide (residues 503-517 in bovine). Zemojtel T; Scheele JS; Martásek P; Masters BS; Sharma VS; Magde D Biochemistry; 2003 Jun; 42(21):6500-6. PubMed ID: 12767233 [TBL] [Abstract][Full Text] [Related]
25. Dissociation and unfolding of inducible nitric oxide synthase oxygenase domain identifies structural role of tetrahydrobiopterin in modulating the heme environment. Sengupta R; Sahoo R; Ray SS; Dutta T; Dasgupta A; Ghosh S Mol Cell Biochem; 2006 Mar; 284(1-2):117-26. PubMed ID: 16411020 [TBL] [Abstract][Full Text] [Related]
26. Characterization of key residues in the subdomain encoded by exons 8 and 9 of human inducible nitric oxide synthase: a critical role for Asp-280 in substrate binding and subunit interactions. Ghosh DK; Rashid MB; Crane B; Taskar V; Mast M; Misukonis MA; Weinberg JB; Eissa NT Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10392-7. PubMed ID: 11517317 [TBL] [Abstract][Full Text] [Related]
28. Low-temperature stabilization and spectroscopic characterization of the dioxygen complex of the ferrous neuronal nitric oxide synthase oxygenase domain. Ledbetter AP; McMillan K; Roman LJ; Masters BS; Dawson JH; Sono M Biochemistry; 1999 Jun; 38(25):8014-21. PubMed ID: 10387045 [TBL] [Abstract][Full Text] [Related]
29. Delineation of the arginine- and tetrahydrobiopterin-binding sites of neuronal nitric oxide synthase. Boyhan A; Smith D; Charles IG; Saqi M; Lowe PN Biochem J; 1997 Apr; 323 ( Pt 1)(Pt 1):131-9. PubMed ID: 9173872 [TBL] [Abstract][Full Text] [Related]
30. Oxygen-induced radical intermediates in the nNOS oxygenase domain regulated by L-arginine, tetrahydrobiopterin, and thiol. Berka V; Wang LH; Tsai AL Biochemistry; 2008 Jan; 47(1):405-20. PubMed ID: 18052254 [TBL] [Abstract][Full Text] [Related]
31. Important role of tetrahydrobiopterin in no complex formation and interdomain electron transfer in neuronal nitric-oxide synthase. Noguchi T; Sagami I; Daff S; Shimizu T Biochem Biophys Res Commun; 2001 Apr; 282(5):1092-7. PubMed ID: 11302726 [TBL] [Abstract][Full Text] [Related]
32. Macrophage NO synthase: characterization of isolated oxygenase and reductase domains reveals a head-to-head subunit interaction. Ghosh DK; Stuehr DJ Biochemistry; 1995 Jan; 34(3):801-7. PubMed ID: 7530045 [TBL] [Abstract][Full Text] [Related]
33. Nitric oxide-generated P420 nitric oxide synthase: characterization and roles for tetrahydrobiopterin and substrate in protecting against or reversing the P420 conversion. Huang L; Abu-Soud HM; Hille R; Stuehr DJ Biochemistry; 1999 Feb; 38(6):1912-20. PubMed ID: 10026272 [TBL] [Abstract][Full Text] [Related]
34. Antifungal imidazoles block assembly of inducible NO synthase into an active dimer. Sennequier N; Wolan D; Stuehr DJ J Biol Chem; 1999 Jan; 274(2):930-8. PubMed ID: 9873034 [TBL] [Abstract][Full Text] [Related]
35. Subunit dissociation and unfolding of macrophage NO synthase: relationship between enzyme structure, prosthetic group binding, and catalytic function. Abu-Soud HM; Loftus M; Stuehr DJ Biochemistry; 1995 Sep; 34(35):11167-75. PubMed ID: 7545434 [TBL] [Abstract][Full Text] [Related]
36. Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans. Adak S; Bilwes AM; Panda K; Hosfield D; Aulak KS; McDonald JF; Tainer JA; Getzoff ED; Crane BR; Stuehr DJ Proc Natl Acad Sci U S A; 2002 Jan; 99(1):107-12. PubMed ID: 11756668 [TBL] [Abstract][Full Text] [Related]
37. Identification of residues critical for enzymatic activity in the domain encoded by exons 8 and 9 of the human inducible nitric oxide synthase. Eissa NT; Haggerty CM; Palmer CD; Patton W; Moss J Am J Respir Cell Mol Biol; 2001 May; 24(5):616-20. PubMed ID: 11350832 [TBL] [Abstract][Full Text] [Related]
38. Aspartate-107 and leucine-109 facilitate efficient coupling of glutamine hydrolysis to CTP synthesis by Escherichia coli CTP synthase. Iyengar A; Bearne SL Biochem J; 2003 Feb; 369(Pt 3):497-507. PubMed ID: 12383057 [TBL] [Abstract][Full Text] [Related]
39. High pressure fourier transform infrared (FT-IR) spectroscopic studies on inducible nitric oxide (NO) synthase active site: a comparison to cytochrome p450CAM. Jung C; Ghosh DK Cell Mol Biol (Noisy-le-grand); 2004 Jun; 50(4):335-46. PubMed ID: 15529743 [TBL] [Abstract][Full Text] [Related]
40. Cloning, expression, and characterization of recombinant nitric oxide synthase-like protein from Bacillus anthracis. Midha S; Mishra R; Aziz MA; Sharma M; Mishra A; Khandelwal P; Bhatnagar R Biochem Biophys Res Commun; 2005 Oct; 336(1):346-56. PubMed ID: 16150307 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]