BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 9271496)

  • 1. Mapping features of HIV-1 integrase near selected sites on viral and target DNA molecules in an active enzyme-DNA complex by photo-cross-linking.
    Heuer TS; Brown PO
    Biochemistry; 1997 Sep; 36(35):10655-65. PubMed ID: 9271496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo-cross-linking studies suggest a model for the architecture of an active human immunodeficiency virus type 1 integrase-DNA complex.
    Heuer TS; Brown PO
    Biochemistry; 1998 May; 37(19):6667-78. PubMed ID: 9578550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyrtiosal, from the marine sponge Hyrtios erectus, inhibits HIV-1 integrase binding to viral DNA by a new inhibitor binding site.
    Du L; Shen L; Yu Z; Chen J; Guo Y; Tang Y; Shen X; Jiang H
    ChemMedChem; 2008 Jan; 3(1):173-80. PubMed ID: 17943714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction.
    Esposito D; Craigie R
    EMBO J; 1998 Oct; 17(19):5832-43. PubMed ID: 9755183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divalent cations stimulate preferential recognition of a viral DNA end by HIV-1 integrase.
    Yi J; Asante-Appiah E; Skalka AM
    Biochemistry; 1999 Jun; 38(26):8458-68. PubMed ID: 10387092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking dinucleotides to HIV-1 integrase carboxyl-terminal domain to find possible DNA binding sites.
    Zhu HM; Chen WZ; Wang CX
    Bioorg Med Chem Lett; 2005 Jan; 15(2):475-7. PubMed ID: 15603976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the functional domains of human foamy virus integrase using chimeric integrases.
    Lee HS; Kang SY; Shin CG
    Mol Cells; 2005 Apr; 19(2):246-55. PubMed ID: 15879710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro assays for activities of retroviral integrase.
    Chow SA
    Methods; 1997 Aug; 12(4):306-17. PubMed ID: 9245611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and structural analysis of HIV-1 integrase conservation.
    Ceccherini-Silberstein F; Malet I; D'Arrigo R; Antinori A; Marcelin AG; Perno CF
    AIDS Rev; 2009; 11(1):17-29. PubMed ID: 19290031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of an active two-domain derivative of Rous sarcoma virus integrase.
    Yang ZN; Mueser TC; Bushman FD; Hyde CC
    J Mol Biol; 2000 Feb; 296(2):535-48. PubMed ID: 10669607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paired DNA three-way junctions as scaffolds for assembling integrase complexes.
    Johnson EP; Bushman FD
    Virology; 2001 Aug; 286(2):304-16. PubMed ID: 11485398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling HIV-1 integrase complexes based on their hydrodynamic properties.
    Podtelezhnikov AA; Gao K; Bushman FD; McCammon JA
    Biopolymers; 2003 Jan; 68(1):110-20. PubMed ID: 12579583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic, thermodynamic, and kinetic basis for recognition and transformation of DNA by human immunodeficiency virus type 1 integrase.
    Bugreev DV; Baranova S; Zakharova OD; Parissi V; Desjobert C; Sottofattori E; Balbi A; Litvak S; Tarrago-Litvak L; Nevinsky GA
    Biochemistry; 2003 Aug; 42(30):9235-47. PubMed ID: 12885259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50-293)--an initial glance of the viral DNA binding platform.
    Chen Z; Yan Y; Munshi S; Li Y; Zugay-Murphy J; Xu B; Witmer M; Felock P; Wolfe A; Sardana V; Emini EA; Hazuda D; Kuo LC
    J Mol Biol; 2000 Feb; 296(2):521-33. PubMed ID: 10669606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the HIV-1 integrase core domain in complex with sucrose reveals details of an allosteric inhibitory binding site.
    Wielens J; Headey SJ; Jeevarajah D; Rhodes DI; Deadman J; Chalmers DK; Scanlon MJ; Parker MW
    FEBS Lett; 2010 Apr; 584(8):1455-62. PubMed ID: 20227411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases.
    Maignan S; Guilloteau JP; Zhou-Liu Q; Clément-Mella C; Mikol V
    J Mol Biol; 1998 Sep; 282(2):359-68. PubMed ID: 9735293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity.
    Greenwald J; Le V; Butler SL; Bushman FD; Choe S
    Biochemistry; 1999 Jul; 38(28):8892-8. PubMed ID: 10413462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling, analysis, and validation of a novel HIV integrase structure provide insights into the binding modes of potent integrase inhibitors.
    Chen X; Tsiang M; Yu F; Hung M; Jones GS; Zeynalzadegan A; Qi X; Jin H; Kim CU; Swaminathan S; Chen JM
    J Mol Biol; 2008 Jul; 380(3):504-19. PubMed ID: 18565342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence-based design and discovery of peptide inhibitors of HIV-1 integrase: insight into the binding mode of the enzyme.
    Li HY; Zawahir Z; Song LD; Long YQ; Neamati N
    J Med Chem; 2006 Jul; 49(15):4477-86. PubMed ID: 16854053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HIV-1 integrase crosslinked oligomers are active in vitro.
    Faure A; Calmels C; Desjobert C; Castroviejo M; Caumont-Sarcos A; Tarrago-Litvak L; Litvak S; Parissi V
    Nucleic Acids Res; 2005; 33(3):977-86. PubMed ID: 15718297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.