BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 9271498)

  • 1. Mechanistic roles of tyrosine 149 and serine 124 in UDP-galactose 4-epimerase from Escherichia coli.
    Liu Y; Thoden JB; Kim J; Berger E; Gulick AM; Ruzicka FJ; Holden HM; Frey PA
    Biochemistry; 1997 Sep; 36(35):10675-84. PubMed ID: 9271498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular structures of the S124A, S124T, and S124V site-directed mutants of UDP-galactose 4-epimerase from Escherichia coli.
    Thoden JB; Gulick AM; Holden HM
    Biochemistry; 1997 Sep; 36(35):10685-95. PubMed ID: 9271499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acid-base catalysis by UDP-galactose 4-epimerase: correlations of kinetically measured acid dissociation constants with thermodynamic values for tyrosine 149.
    Berger E; Arabshahi A; Wei Y; Schilling JF; Frey PA
    Biochemistry; 2001 Jun; 40(22):6699-705. PubMed ID: 11380265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dramatic differences in the binding of UDP-galactose and UDP-glucose to UDP-galactose 4-epimerase from Escherichia coli.
    Thoden JB; Holden HM
    Biochemistry; 1998 Aug; 37(33):11469-77. PubMed ID: 9708982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 13C NMR analysis of electrostatic interactions between NAD+ and active site residues of UDP-galactose 4-epimerase: implications for the activation induced by uridine nucleotides.
    Wei Y; Lin J; Frey PA
    Biochemistry; 2001 Sep; 40(37):11279-87. PubMed ID: 11551228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UDP-galactose 4-epimerase: NAD+ content and a charge-transfer band associated with the substrate-induced conformational transition.
    Liu Y; Vanhooke JL; Frey PA
    Biochemistry; 1996 Jun; 35(23):7615-20. PubMed ID: 8652544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of the oxidized and reduced forms of UDP-galactose 4-epimerase isolated from Escherichia coli.
    Thoden JB; Frey PA; Holden HM
    Biochemistry; 1996 Feb; 35(8):2557-66. PubMed ID: 8611559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli.
    Thoden JB; Hegeman AD; Wesenberg G; Chapeau MC; Frey PA; Holden HM
    Biochemistry; 1997 May; 36(21):6294-304. PubMed ID: 9174344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular structure of the NADH/UDP-glucose abortive complex of UDP-galactose 4-epimerase from Escherichia coli: implications for the catalytic mechanism.
    Thoden JB; Frey PA; Holden HM
    Biochemistry; 1996 Apr; 35(16):5137-44. PubMed ID: 8611497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis.
    Cha J; Auld DS
    Biochemistry; 1997 Dec; 36(50):16019-24. PubMed ID: 9398337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates.
    Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB
    Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UDP-galactose 4-epimerase from Kluyveromyces fragilis: analysis of its hysteretic behavior during catalysis.
    Nayar S; Brahma A; Barat B; Bhattacharyya D
    Biochemistry; 2004 Aug; 43(31):10212-23. PubMed ID: 15287749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient kinetics of formation and reaction of the uridylyl-enzyme form of galactose-1-P uridylyltransferase and its Q168R-variant: insight into the molecular basis of galactosemia.
    Geeganage S; Frey PA
    Biochemistry; 1998 Oct; 37(41):14500-7. PubMed ID: 9772178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of Y34F mutant human mitochondrial manganese superoxide dismutase and the functional role of tyrosine 34.
    Guan Y; Hickey MJ; Borgstahl GE; Hallewell RA; Lepock JR; O'Connor D; Hsieh Y; Nick HS; Silverman DN; Tainer JA
    Biochemistry; 1998 Apr; 37(14):4722-30. PubMed ID: 9537987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retention of NADPH-linked quinone reductase activity in an aldo-keto reductase following mutation of the catalytic tyrosine.
    Schlegel BP; Ratnam K; Penning TM
    Biochemistry; 1998 Aug; 37(31):11003-11. PubMed ID: 9692994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic roles of Thr134, Tyr160, and Lys 164 in the reaction catalyzed by dTDP-glucose 4,6-dehydratase.
    Gerratana B; Cleland WW; Frey PA
    Biochemistry; 2001 Aug; 40(31):9187-95. PubMed ID: 11478886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based design of an intramolecular proton transfer site in murine carbonic anhydrase V.
    Heck RW; Boriack-Sjodin PA; Qian M; Tu C; Christianson DW; Laipis PJ; Silverman DN
    Biochemistry; 1996 Sep; 35(36):11605-11. PubMed ID: 8794740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and structural effects of mutations of the catalytic amino-terminal proline in 4-oxalocrotonate tautomerase.
    Czerwinski RM; Johnson WH; Whitman CP
    Biochemistry; 1997 Nov; 36(47):14551-60. PubMed ID: 9398173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and stereochemical actions of UDP-galactose 4-epimerase.
    Frey PA; Hegeman AD
    Acc Chem Res; 2013 Jul; 46(7):1417-26. PubMed ID: 23339688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme.
    Karsten WE; Liu D; Rao GS; Harris BG; Cook PF
    Biochemistry; 2005 Mar; 44(9):3626-35. PubMed ID: 15736972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.