These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 927172)

  • 1. Reversible blocking at arginine by cyclohexanedione.
    Smith EL
    Methods Enzymol; 1977; 47():156-61. PubMed ID: 927172
    [No Abstract]   [Full Text] [Related]  

  • 2. Reactivity of D-amino acid oxidase with 1,2-cyclohexanedione: evidence for one arginine in the substrate-binding site.
    Ferti C; Curti B; Simonetta MP; Ronchi S; Galliano M; Minchiotti L
    Eur J Biochem; 1981 Oct; 119(3):553-7. PubMed ID: 6118269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of arginines in bovine growth hormone.
    Wolfenstein-Todel C; Santomé JA
    Int J Pept Protein Res; 1983 Nov; 22(5):611-6. PubMed ID: 6317584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1,2-Cyclohexanedione modification of arginine residues in egg-white riboflavin-binding protein.
    Kozik A; Guevara I; Zak Z
    Int J Biochem; 1988; 20(7):707-11. PubMed ID: 3181600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of apolipoprotein C-II with 1,2-cyclohexanedione and 2,3-butanedione. Role of arginine in the activation of lipoprotein lipase.
    Holdsworth G; Noel JG; Stedje K; Shinomiya M; Jackson RL
    Biochim Biophys Acta; 1984 Jul; 794(3):472-8. PubMed ID: 6743677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of arginine residues in ovine lutropin: reversible modification by 1,2-cyclohexanedione.
    Sairam MR
    Arch Biochem Biophys; 1976 Sep; 176(1):197-205. PubMed ID: 970955
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of Clostridium difficile toxin A and B by 1,2-cyclohexanedione modification of an arginine residue.
    Balfanz J; Rautenberg P
    Biochem Biophys Res Commun; 1989 Dec; 165(3):1364-70. PubMed ID: 2610698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible modification of arginine residues in neocarzinostatin. Isolation of a biologically active 89-residue fragment from the tryptic hydrolysate.
    Samy TS; Kappen LS; Goldberg IH
    J Biol Chem; 1980 Apr; 255(8):3420-6. PubMed ID: 6444949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased heparin sensitivity of cyclohexanedione-modified factor Xa.
    Blaskó G; Machovich R
    Thromb Haemost; 1979 Aug; 42(2):556-63. PubMed ID: 505364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of arginine residues in human growth hormone by 1,2-cyclohexanedione: effects on the binding capacity to lactogenic and somatogenic receptors.
    Atlasovich FM; Caridad JJ; Nowicki C; Santomé JA; Wolfenstein-Todel C
    Arch Biochem Biophys; 1990 Aug; 281(1):1-5. PubMed ID: 2166475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of arginines in trypsin inhibitors by 1,2-cyclohexanedione.
    Liu WH; Feinstein G; Osuga DT; Haynes R; Feeney RE
    Biochemistry; 1968 Aug; 7(8):2886-92. PubMed ID: 5691144
    [No Abstract]   [Full Text] [Related]  

  • 12. CHEMICAL MODIFICATION OF ARGININE WITH 1,2-CYCLOHEXANEDIONE.
    TOI K; BYNUM E; NORRIS E; ITANO HA
    J Biol Chem; 1965 Aug; 240():PC3455-7. PubMed ID: 14321390
    [No Abstract]   [Full Text] [Related]  

  • 13. Identification of the C-1-phosphate-binding arginine residue of rabbit-muscle aldolase. Isolation of 1,2-cyclohexanedione-labeled peptide by chemisorption chromatography.
    Patthy L; Váradi A; Thész J; Kovács K
    Eur J Biochem; 1979 Sep; 99(2):309-13. PubMed ID: 499203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of selective modification of the arginyl residues of partially-metabolized very low density lipoproteins on their uptake by the liver.
    Suri BS; Targ ME; Robinson DS
    FEBS Lett; 1981 Oct; 133(2):283-6. PubMed ID: 7308485
    [No Abstract]   [Full Text] [Related]  

  • 15. Inhibition of anion transport across red blood cells with 1,2-cyclohexanedione.
    Zaki L
    Biochem Biophys Res Commun; 1981 Mar; 99(1):243-51. PubMed ID: 7236263
    [No Abstract]   [Full Text] [Related]  

  • 16. Evaluation of 2-benzylidenecyclohexanones and 2,6-bis(benzylidene)cyclohexanones for antitumor and cytotoxic activity and as inhibitors of mitochondrial function in yeast: metabolism studies of (E)-2-benzylidenecyclohexanone.
    Dimmock JR; Hamon NW; Hindmarsh KW; Sellar AP; Turner WA; Rank GH; Robertson AJ
    J Pharm Sci; 1976 Apr; 65(4):538-43. PubMed ID: 775053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protection of hexaprenyl-diphosphate synthase of Micrococcus luteus B-P 26 against inactivation by sulphydryl reagents and arginine-specific reagents.
    Yoshida I; Koyama T; Ogura K
    Biochim Biophys Acta; 1989 Apr; 995(2):138-43. PubMed ID: 2539196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of phenylalanyl-arginyl-leucyl-aspartic acid: a model study of the coupling of arginine-terminal tryptic fragments of proteins.
    Izumiya N; Noda K; Anfinsen CB
    Arch Biochem Biophys; 1971 May; 144(1):237-44. PubMed ID: 5117528
    [No Abstract]   [Full Text] [Related]  

  • 19. Studies on the chemical modification of arginine. I. The reaction of 1,2-cyclohexanedione with arginine and arginyl residues of proteins.
    Toi K; Bynum E; Norris E; Itano HA
    J Biol Chem; 1967 Mar; 242(5):1036-43. PubMed ID: 6020430
    [No Abstract]   [Full Text] [Related]  

  • 20. Inhibition of staphylococcal alpha-toxin by covalent modification of an arginine residue.
    Hebert TE; Fackrell HB
    Biochim Biophys Acta; 1987 Dec; 916(3):419-27. PubMed ID: 3689801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.