These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 9271851)
1. Lif, the lysostaphin immunity factor, complements FemB in staphylococcal peptidoglycan interpeptide bridge formation. Tschierske M; Ehlert K; Strandén AM; Berger-Bächi B FEMS Microbiol Lett; 1997 Aug; 153(2):261-4. PubMed ID: 9271851 [TBL] [Abstract][Full Text] [Related]
2. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. Strandén AM; Ehlert K; Labischinski H; Berger-Bächi B J Bacteriol; 1997 Jan; 179(1):9-16. PubMed ID: 8981974 [TBL] [Abstract][Full Text] [Related]
3. Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation. Ehlert K; Schröder W; Labischinski H J Bacteriol; 1997 Dec; 179(23):7573-6. PubMed ID: 9393725 [TBL] [Abstract][Full Text] [Related]
4. epr, which encodes glycylglycine endopeptidase resistance, is homologous to femAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus. Sugai M; Fujiwara T; Ohta K; Komatsuzawa H; Ohara M; Suginaka H J Bacteriol; 1997 Jul; 179(13):4311-8. PubMed ID: 9209049 [TBL] [Abstract][Full Text] [Related]
5. Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Thumm G; Götz F Mol Microbiol; 1997 Mar; 23(6):1251-65. PubMed ID: 9106216 [TBL] [Abstract][Full Text] [Related]
6. Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. Henze U; Sidow T; Wecke J; Labischinski H; Berger-Bächi B J Bacteriol; 1993 Mar; 175(6):1612-20. PubMed ID: 8383661 [TBL] [Abstract][Full Text] [Related]
7. Staphylococcal peptidoglycan interpeptide bridge biosynthesis: a novel antistaphylococcal target? Kopp U; Roos M; Wecke J; Labischinski H Microb Drug Resist; 1996; 2(1):29-41. PubMed ID: 9158720 [TBL] [Abstract][Full Text] [Related]
8. Living with an imperfect cell wall: compensation of femAB inactivation in Staphylococcus aureus. Hübscher J; Jansen A; Kotte O; Schäfer J; Majcherczyk PA; Harris LG; Bierbaum G; Heinemann M; Berger-Bächi B BMC Genomics; 2007 Sep; 8():307. PubMed ID: 17784943 [TBL] [Abstract][Full Text] [Related]
9. Degradation of penicillin-binding protein 2' in methicillin-resistant Staphylococcus aureus. Sumita Y; Fukasawa M; Mitsuhashi S; Inoue M Chemotherapy; 1995; 41(3):172-7. PubMed ID: 7656662 [TBL] [Abstract][Full Text] [Related]
10. Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. de Jonge BL; Chang YS; Gage D; Tomasz A J Biol Chem; 1992 Jun; 267(16):11248-54. PubMed ID: 1597460 [TBL] [Abstract][Full Text] [Related]
11. Increased production of penicillin-binding protein 2, increased detection of other penicillin-binding proteins, and decreased coagulase activity associated with glycopeptide resistance in Staphylococcus aureus. Moreira B; Boyle-Vavra S; deJonge BL; Daum RS Antimicrob Agents Chemother; 1997 Aug; 41(8):1788-93. PubMed ID: 9257762 [TBL] [Abstract][Full Text] [Related]
12. Site-specific serine incorporation by Lif and Epr into positions 3 and 5 of the Staphylococcal peptidoglycan interpeptide bridge. Ehlert K; Tschierske M; Mori C; Schröder W; Berger-Bächi B J Bacteriol; 2000 May; 182(9):2635-8. PubMed ID: 10762270 [TBL] [Abstract][Full Text] [Related]
13. Abnormal peptidoglycan produced in a methicillin-resistant strain of Staphylococcus aureus grown in the presence of methicillin: functional role for penicillin-binding protein 2A in cell wall synthesis. de Jonge BL; Tomasz A Antimicrob Agents Chemother; 1993 Feb; 37(2):342-6. PubMed ID: 8452368 [TBL] [Abstract][Full Text] [Related]
14. In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Schneider T; Senn MM; Berger-Bächi B; Tossi A; Sahl HG; Wiedemann I Mol Microbiol; 2004 Jul; 53(2):675-85. PubMed ID: 15228543 [TBL] [Abstract][Full Text] [Related]
16. Structural characterization of an abnormally cross-linked muropeptide dimer that is accumulated in the peptidoglycan of methicillin- and cefotaxime-resistant mutants of Staphylococcus aureus. Boneca IG; Xu N; Gage DA; de Jonge BL; Tomasz A J Biol Chem; 1997 Nov; 272(46):29053-9. PubMed ID: 9360979 [TBL] [Abstract][Full Text] [Related]
17. Identification of three additional femAB-like open reading frames in Staphylococcus aureus. Tschierske M; Mori C; Rohrer S; Ehlert K; Shaw KJ; Berger-Bächi B FEMS Microbiol Lett; 1999 Feb; 171(2):97-102. PubMed ID: 10077832 [TBL] [Abstract][Full Text] [Related]
18. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Pinho MG; de Lencastre H; Tomasz A Proc Natl Acad Sci U S A; 2001 Sep; 98(19):10886-91. PubMed ID: 11517340 [TBL] [Abstract][Full Text] [Related]
19. Moenomycin-resistance is associated with vancomycin-intermediate susceptibility in Staphylococcus aureus. Nishi H; Komatsuzawa H; Yamada S; Fujiwara T; Ohara M; Ohta K; Sugiyama M; Ishikawa T; Sugai M Microbiol Immunol; 2003; 47(12):927-35. PubMed ID: 14695442 [TBL] [Abstract][Full Text] [Related]
20. [The structure and function of the mecA gene in methicillin-resistant Staphylococcus aureus]. Kanno H Nihon Rinsho; 1992 May; 50(5):1016-9. PubMed ID: 1507425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]