These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9271896)

  • 1. Infectious disease persistence when transmission varies seasonally.
    Williams BG; Dye C
    Math Biosci; 1997 Oct; 145(1):77-88. PubMed ID: 9271896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modelling and theory for estimating the basic reproduction number of canine leishmaniasis.
    Hasibeder G; Dye C; Carpenter J
    Parasitology; 1992 Aug; 105 ( Pt 1)():43-53. PubMed ID: 1437275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of R0 for age-of-infection models.
    Yang CK; Brauer F
    Math Biosci Eng; 2008 Jul; 5(3):585-99. PubMed ID: 18616360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The epidemiology of canine leishmaniasis: transmission rates estimated from a cohort study in Amazonian Brazil.
    Quinnell RJ; Courtenay O; Garcez L; Dye C
    Parasitology; 1997 Aug; 115 ( Pt 2)():143-56. PubMed ID: 10190170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indirect transmission and the effect of seasonal pathogen inactivation on infectious disease periodicity.
    Robinson M; Drossinos Y; Stilianakis NI
    Epidemics; 2013 Jun; 5(2):111-21. PubMed ID: 23746804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytic calculation of finite-population reproductive numbers for direct- and vector-transmitted diseases with homogeneous mixing.
    Keegan L; Dushoff J
    Bull Math Biol; 2014 May; 76(5):1143-54. PubMed ID: 24756856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From the bench to modeling--R0 at the interface between empirical and theoretical approaches in epidemiology of environmentally transmitted infectious diseases.
    Ivanek R; Lahodny G
    Prev Vet Med; 2015 Feb; 118(2-3):196-206. PubMed ID: 25441048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new method for estimating the effort required to control an infectious disease.
    Roberts MG; Heesterbeek JA
    Proc Biol Sci; 2003 Jul; 270(1522):1359-64. PubMed ID: 12965026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal infectious disease epidemiology.
    Grassly NC; Fraser C
    Proc Biol Sci; 2006 Oct; 273(1600):2541-50. PubMed ID: 16959647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Climate change - a pioneer for the expansion of canine vector-borne diseases?].
    Krämer F; Mencke N
    Tierarztl Prax Ausg K Kleintiere Heimtiere; 2011; 39(1):31-7. PubMed ID: 22143561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonally varying epidemics with and without latent period: a comparative simulation study.
    Moneim IA
    Math Med Biol; 2007 Mar; 24(1):1-15. PubMed ID: 17317756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The basic reproduction number obtained from Jacobian and next generation matrices - A case study of dengue transmission modelling.
    Yang HM
    Biosystems; 2014 Dec; 126():52-75. PubMed ID: 25305542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A theoretical framework to identify invariant thresholds in infectious disease epidemiology.
    Gomes MGM; Gjini E; Lopes JS; Souto-Maior C; Rebelo C
    J Theor Biol; 2016 Apr; 395():97-102. PubMed ID: 26869215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Winter is coming: Pathogen emergence in seasonal environments.
    Carmona P; Gandon S
    PLoS Comput Biol; 2020 Jul; 16(7):e1007954. PubMed ID: 32628658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The estimation of the basic reproduction number for infectious diseases.
    Dietz K
    Stat Methods Med Res; 1993; 2(1):23-41. PubMed ID: 8261248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidemiology of canine leishmaniasis in the Madrid region, Spain.
    Amela C; Mendez I; Torcal JM; Medina G; Pachón I; Cañavate C; Alvar J
    Eur J Epidemiol; 1995 Apr; 11(2):157-61. PubMed ID: 7672069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spread of Leishmania infantum in Europe with dog travelling.
    Maia C; Cardoso L
    Vet Parasitol; 2015 Sep; 213(1-2):2-11. PubMed ID: 26021526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global stability of an epidemic model with delay and general nonlinear incidence.
    McCluskey CC
    Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canine leishmaniosis in three consecutive generations of dogs in Czech Republic.
    Svobodova V; Svoboda M; Friedlaenderova L; Drahotsky P; Bohacova E; Baneth G
    Vet Parasitol; 2017 Apr; 237():122-124. PubMed ID: 28279490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.