These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 9273907)

  • 1. Endothelin-1 does not contribute to ischemia/reperfusion-induced vasoconstriction in skeletal muscle.
    Wang WZ; Anderson G; Acland RD; Barker J
    J Reconstr Microsurg; 1997 Aug; 13(6):439-47. PubMed ID: 9273907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of nitric oxide contributes to vasospasm during ischemia/reperfusion injury.
    Wang WZ; Anderson G; Fleming JT; Peter FW; Franken RJ; Acland RD; Barker J
    Plast Reconstr Surg; 1997 Apr; 99(4):1099-108. PubMed ID: 9091909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platelet-activating factor contributes to postischemic vasospasm.
    Wang WZ; Guo SZ; Tsai TM; Anderson GL; Miller FN
    J Surg Res; 2000 Apr; 89(2):139-46. PubMed ID: 10729242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuation of vasospasm and capillary no-reflow by ischemic preconditioning in skeletal muscle.
    Wang WZ; Anderson G; Maldonado C; Barker J
    Microsurgery; 1996; 17(6):324-9. PubMed ID: 9308717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the thromboxane A2 receptor in the vasoactive response to ischemia-reperfusion injury.
    Mazolewski PJ; Roth AC; Suchy H; Stephenson LL; Zamboni WA
    Plast Reconstr Surg; 1999 Oct; 104(5):1393-6. PubMed ID: 10513923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute microvascular action of vascular endothelial growth factor in skeletal muscle ischemia/reperfusion injury.
    Wang WZ; Fang XH; Stepheson LL; Khiabani KT; Zamboni WA
    Plast Reconstr Surg; 2005 Apr; 115(5):1355-65. PubMed ID: 15809599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ischemia-reperfusion injury in skeletal muscle: CD 18-dependent neutrophil-endothelial adhesion and arteriolar vasoconstriction.
    Zamboni WA; Stephenson LL; Roth AC; Suchy H; Russell RC
    Plast Reconstr Surg; 1997 Jun; 99(7):2002-7; discussion 2008-9. PubMed ID: 9180724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microcirculatory effects of melatonin in rat skeletal muscle after prolonged ischemia.
    Wang WZ; Fang XH; Stephenson LL; Baynosa RC; Khiabani KT; Zamboni WA
    J Pineal Res; 2005 Aug; 39(1):57-65. PubMed ID: 15978058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of endothelin and endothelin receptor antagonism in arteriolar and venolar microcirculation.
    Hergenröder S; Münter K; Kirchengast M
    Vasa; 1998 Nov; 27(4):216-9. PubMed ID: 9859740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The effect of L-arginine on the microcirculation reperfusion of cremaster muscle in rats].
    Li J; Guo E
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2001 Nov; 17(6):363-5. PubMed ID: 11838064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological concentrations of insulin induce endothelin-mediated vasoconstriction during inhibition of NOS or PI3-kinase in skeletal muscle arterioles.
    Eringa EC; Stehouwer CD; Merlijn T; Westerhof N; Sipkema P
    Cardiovasc Res; 2002 Dec; 56(3):464-71. PubMed ID: 12445887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arteriole constriction following ischemia in denervated skeletal muscle.
    Wang WZ; Anderson G; Firrell JC
    J Reconstr Microsurg; 1995 Mar; 11(2):99-106. PubMed ID: 7791145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microvascular protection induced by late preconditioning was abolished in STZ-induced acute diabetic rats.
    Wang WZ; Jones S; Stepheson LL; Khiabani KT; Zamboni WA
    J Reconstr Microsurg; 2002 Nov; 18(8):689-96. PubMed ID: 12524588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological concentrations of insulin induce endothelin-dependent vasoconstriction of skeletal muscle resistance arteries in the presence of tumor necrosis factor-alpha dependence on c-Jun N-terminal kinase.
    Eringa EC; Stehouwer CD; Walburg K; Clark AD; van Nieuw Amerongen GP; Westerhof N; Sipkema P
    Arterioscler Thromb Vasc Biol; 2006 Feb; 26(2):274-80. PubMed ID: 16322532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of ischemia-reperfusion injury in skeletal muscle: efficacy of 21-aminosteroids on microcirculation and muscle contraction after an extended period of warm ischemia.
    Korompilias AV; Chen LE; Seaber AV; Urbaniak JR
    J Orthop Res; 1997 Jul; 15(4):512-8. PubMed ID: 9379260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrite attenuates ischemia-reperfusion-induced microcirculatory alterations and mitochondrial dysfunction in the microvasculature of skeletal muscle.
    Wang WZ; Fang XH; Stephenson LL; Zhang X; Williams SJ; Baynosa RC; Khiabani KT; Zamboni WA
    Plast Reconstr Surg; 2011 Oct; 128(4):279e-287e. PubMed ID: 21921740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcitonin gene-related peptide and reperfusion injury.
    Allen DM; Chen LE; Seaber AV; Urbaniak JR
    J Orthop Res; 1997 Mar; 15(2):243-8. PubMed ID: 9167627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of supplementation of BH4 after prolonged ischemia in skeletal muscle.
    Wang WZ; Fang XH; Stephenson LL; Khiabani KT; Zamboni WA
    Microsurgery; 2007; 27(3):200-5. PubMed ID: 17326224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ischemic preconditioning versus intermittent reperfusion to improve blood flow to a vascular isolated skeletal muscle flap of rats.
    Wang WZ; Anderson G; Firrell JC; Tsai TM
    J Trauma; 1998 Nov; 45(5):953-9. PubMed ID: 9820708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Late-preconditioning protection is evident in the microcirculation of denervated skeletal muscle.
    Wang WZ; Tsai TM; Anderson GL
    J Orthop Res; 1999 Jul; 17(4):571-7. PubMed ID: 10459764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.