BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9273993)

  • 1. The role of entropy in the discrimination between CO and O2 in myoglobin.
    Filiaci M; Nienhaus GU
    Eur Biophys J; 1997; 26(3):209-14. PubMed ID: 9273993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein relaxation in the photodissociation of myoglobin-CO complexes.
    Angeloni L; Feis A
    Photochem Photobiol Sci; 2003 Jul; 2(7):730-40. PubMed ID: 12911220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entropic stabilization of myoglobin by subdenaturing concentrations of guanidine hydrochloride.
    Kumar R; Bhuyan AK
    J Biol Inorg Chem; 2009 Jan; 14(1):11-21. PubMed ID: 18752006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-dynamics-function relationships in Asian elephant (Elephas maximus) myoglobin. An optical spectroscopy and flash photolysis study on functionally important motions.
    Cupane A; Leone M; Vitrano E; Cordone L; Hiltpold UR; Winterhalter KH; Yu W; Di Iorio EE
    Biophys J; 1993 Dec; 65(6):2461-72. PubMed ID: 8312484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural dynamics of myoglobin: spectroscopic and structural characterization of ligand docking sites in myoglobin mutant L29W.
    Nienhaus K; Deng P; Kriegl JM; Nienhaus GU
    Biochemistry; 2003 Aug; 42(32):9633-46. PubMed ID: 12911305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin.
    Chu K; Vojtchovský J; McMahon BH; Sweet RM; Berendzen J; Schlichting I
    Nature; 2000 Feb; 403(6772):921-3. PubMed ID: 10706294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of structure and energy of horse carboxymyoglobin after photodissociation of carbon monoxide.
    Sakakura M; Yamaguchi S; Hirota N; Terazima M
    J Am Chem Soc; 2001 May; 123(18):4286-94. PubMed ID: 11457195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusual ligand discrimination by a myoglobin reconstituted with a hydrophobic domain-linked heme.
    Sato H; Watanabe M; Hisaeda Y; Hayashi T
    J Am Chem Soc; 2005 Jan; 127(1):56-7. PubMed ID: 15631446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global mapping of structural solutions provided by the extended X-ray absorption fine structure ab initio code FEFF 6.01: structure of the cryogenic photoproduct of the myoglobin-carbon monoxide complex.
    Chance MR; Miller LM; Fischetti RF; Scheuring E; Huang WX; Sclavi B; Hai Y; Sullivan M
    Biochemistry; 1996 Jul; 35(28):9014-23. PubMed ID: 8703904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-induced relaxation of photolyzed carbonmonoxy myoglobin: a temperature-dependent x-ray absorption near-edge structure (XANES) study.
    Arcovito A; Lamb DC; Nienhaus GU; Hazemann JL; Benfatto M; Della Longa S
    Biophys J; 2005 Apr; 88(4):2954-64. PubMed ID: 15681649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volume and enthalpy profiles of CO rebinding to horse heart myoglobin.
    Miksovská J; Day JH; Larsen RW
    J Biol Inorg Chem; 2003 Jul; 8(6):621-5. PubMed ID: 12733053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geminate recombination of diatomic ligands CO, O2, and NO with myoglobin.
    Walda KN; Liu XY; Sharma VS; Magde D
    Biochemistry; 1994 Mar; 33(8):2198-209. PubMed ID: 8117677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of microscopic rate constants for CO binding and migration in myoglobin encapsulated in silica gels.
    Sottini S; Abbruzzetti S; Viappiani C; Ronda L; Mozzarelli A
    J Phys Chem B; 2005 Oct; 109(41):19523-8. PubMed ID: 16853522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional distributions of activation enthalpy and entropy from kinetics by the maximum entropy method.
    Steinbach PJ
    Biophys J; 1996 Mar; 70(3):1521-8. PubMed ID: 8785309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of the discrimination between O(2) and CO by myoglobin.
    Sigfridsson E; Ryde U
    J Inorg Biochem; 2002 Jul; 91(1):101-15. PubMed ID: 12121767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural dynamics of myoglobin: effect of internal cavities on ligand migration and binding.
    Nienhaus K; Deng P; Kriegl JM; Nienhaus GU
    Biochemistry; 2003 Aug; 42(32):9647-58. PubMed ID: 12911306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural relaxation and nonexponential kinetics of CO-binding to horse myoglobin. Multiple flash photolysis experiments.
    Post F; Doster W; Karvounis G; Settles M
    Biophys J; 1993 Jun; 64(6):1833-42. PubMed ID: 8369410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competition with xenon elicits ligand migration and escape pathways in myoglobin.
    Tetreau C; Blouquit Y; Novikov E; Quiniou E; Lavalette D
    Biophys J; 2004 Jan; 86(1 Pt 1):435-47. PubMed ID: 14695286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron porphyrin-cyclodextrin supramolecular complex as a functional model of myoglobin in aqueous solution.
    Kano K; Kitagishi H; Dagallier C; Kodera M; Matsuo T; Hayashi T; Hisaeda Y; Hirota S
    Inorg Chem; 2006 May; 45(11):4448-60. PubMed ID: 16711695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of NaCl addition on nanosecond O2 escaping reaction of myoglobin: evidences for the transition of myoglobin dynamic structure at 20 degrees C.
    Sato F; Sakaguchi Y; Hayashi H; Iizuka T; Shiro Y
    Biochim Biophys Acta; 1992 Aug; 1122(3):299-304. PubMed ID: 1504091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.