BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9274012)

  • 1. Restoration of wild-type virulence to Tri5 disruption mutants of Gibberella zeae via gene reversion and mutant complementation.
    Proctor RH; Hohn TM; McCormick SP
    Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2583-2591. PubMed ID: 9274012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene.
    Proctor RH; Hohn TM; McCormick SP
    Mol Plant Microbe Interact; 1995; 8(4):593-601. PubMed ID: 8589414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of aberrant virulence of Gibberella zeae following transformation-mediated complementation of a trichothecene-deficient (Tri5) mutant.
    Desjardins AE; Bai GH; Plattner RD; Proctor RH
    Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():2059-2068. PubMed ID: 10931910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analyses of the nitrogen regulatory gene areA in Gibberella zeae.
    Min K; Shin Y; Son H; Lee J; Kim JC; Choi GJ; Lee YW
    FEMS Microbiol Lett; 2012 Sep; 334(1):66-73. PubMed ID: 22702217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Tox5 gene expression in Gibberella pulicaris strains with different trichothecene production phenotypes.
    Hohn TM; Desjardins AE; McCormick SP
    Appl Environ Microbiol; 1993 Aug; 59(8):2359-63. PubMed ID: 8368827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion and complementation of the mating type (MAT) locus of the wheat head blight pathogen Gibberella zeae.
    Desjardins AE; Brown DW; Yun SH; Proctor RH; Lee T; Plattner RD; Lu SW; Turgeon BG
    Appl Environ Microbiol; 2004 Apr; 70(4):2437-44. PubMed ID: 15066842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and gene disruption of the Tox5 gene encoding trichodiene synthase in Gibberella pulicaris.
    Hohn TM; Desjardins AE
    Mol Plant Microbe Interact; 1992; 5(3):249-56. PubMed ID: 1421511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relevance of trichothecenes in fungal physiology: disruption of tri5 in Trichoderma arundinaceum.
    Malmierca MG; Cardoza RE; Alexander NJ; McCormick SP; Collado IG; Hermosa R; Monte E; Gutiérrez S
    Fungal Genet Biol; 2013 Apr; 53():22-33. PubMed ID: 23454546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of the glyoxylate and methylcitrate cycles in sexual development and virulence in the cereal pathogen Gibberella zeae.
    Lee SH; Han YK; Yun SH; Lee YW
    Eukaryot Cell; 2009 Aug; 8(8):1155-64. PubMed ID: 19525419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence.
    Maier FJ; Miedaner T; Hadeler B; Felk A; Salomon S; Lemmens M; Kassner H; Schäfer W
    Mol Plant Pathol; 2006 Nov; 7(6):449-61. PubMed ID: 20507460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance.
    Desjardins AE; Hohn TM; McCormick SP
    Microbiol Rev; 1993 Sep; 57(3):595-604. PubMed ID: 8246841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription factor ART1 mediates starch hydrolysis and mycotoxin production in Fusarium graminearum and F. verticillioides.
    Oh M; Son H; Choi GJ; Lee C; Kim JC; Kim H; Lee YW
    Mol Plant Pathol; 2016 Jun; 17(5):755-68. PubMed ID: 26456718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the gene cluster for biosynthesis of macrocyclic trichothecenes in Myrothecium roridum.
    Trapp SC; Hohn TM; McCormick S; Jarvis BB
    Mol Gen Genet; 1998 Feb; 257(4):421-32. PubMed ID: 9529523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trichothecene profiling and population genetic analysis of Gibberella zeae from barley in North Dakota and Minnesota.
    Burlakoti RR; Neate SM; Adhikari TB; Gyawali S; Salas B; Steffenson BJ; Schwarz PB
    Phytopathology; 2011 Jun; 101(6):687-95. PubMed ID: 21244225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of acetylglutamate synthase and phosphoribosylamine-glycine ligase genes in Gibberella zeae.
    Kim JE; Myong K; Shim WB; Yun SH; Lee YW
    Curr Genet; 2007 Feb; 51(2):99-108. PubMed ID: 17146619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection.
    Ilgen P; Hadeler B; Maier FJ; Schäfer W
    Mol Plant Microbe Interact; 2009 Aug; 22(8):899-908. PubMed ID: 19589066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of the homoserine O-acetyltransferase gene and its identification as a selectable marker in Gibberella zeae.
    Han YK; Lee T; Han KH; Yun SH; Lee YW
    Curr Genet; 2004 Oct; 46(4):205-12. PubMed ID: 15378266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome analysis of trichothecene-induced gene expression in barley.
    Boddu J; Cho S; Muehlbauer GJ
    Mol Plant Microbe Interact; 2007 Nov; 20(11):1364-75. PubMed ID: 17977148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthetic and genetic relationships of B-series fumonisins produced by Gibberella fujikuroi mating population A.
    Proctor RH; Desjardins AE; Plattner RD
    Nat Toxins; 1999; 7(6):251-8. PubMed ID: 11122515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of the Fusarium graminearum terpenome and involvement of the endoplasmic reticulum-derived toxisome.
    Flynn CM; Broz K; Jonkers W; Schmidt-Dannert C; Kistler HC
    Fungal Genet Biol; 2019 Mar; 124():78-87. PubMed ID: 30664933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.