These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 9274760)

  • 81. Eye position stability in amblyopia and in normal binocular vision.
    González EG; Wong AM; Niechwiej-Szwedo E; Tarita-Nistor L; Steinbach MJ
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5386-94. PubMed ID: 22789926
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Eye proprioception and visual localization in humans: influence of ocular dominance and visual context.
    Velay JL; Roll R; Lennerstrand G; Roll JP
    Vision Res; 1994 Aug; 34(16):2169-76. PubMed ID: 7941413
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Comparing the fixational and functional preferred retinal location in a pointing task.
    Sullivan B; Walker L
    Vision Res; 2015 Nov; 116(Pt A):68-79. PubMed ID: 26440864
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The time course of estimating time-to-contact: switching between sources of information.
    López-Moliner J; Supèr H; Keil MS
    Vision Res; 2013 Nov; 92():53-8. PubMed ID: 24075899
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Better performance with two eyes than with one in stereo-blind subjects' judgments of motion in depth.
    van Mierlo CM; Brenner E; Smeets JB
    Vision Res; 2011 Jun; 51(11):1249-53. PubMed ID: 21458479
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Infants' ability to respond to depth from the retinal size of human faces: comparing monocular and binocular preferential-looking.
    Tsuruhara A; Corrow S; Kanazawa S; Yamaguchi MK; Yonas A
    Infant Behav Dev; 2014 Nov; 37(4):562-70. PubMed ID: 25113916
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Object-centered reference frames in depth as revealed by induced motion.
    Léveillé J; Myers E; Yazdanbakhsh A
    J Vis; 2014 Mar; 14(3):15. PubMed ID: 24618108
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Retinal image motion alone does not control disconjugate postsaccadic eye drift.
    Kapoula Z; Optican LM; Robinson DA
    J Neurophysiol; 1990 May; 63(5):999-1009. PubMed ID: 2358876
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Short-latency ocular following in humans is dependent on absolute (rather than relative) binocular disparity.
    Yang DS; Miles FA
    Vision Res; 2003 Jun; 43(12):1387-96. PubMed ID: 12742108
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Short-latency disparity vergence responses and their dependence on a prior saccadic eye movement.
    Busettini C; Miles FA; Krauzlis RJ
    J Neurophysiol; 1996 Apr; 75(4):1392-410. PubMed ID: 8727386
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The cyclopean illusion unleashed.
    Ono H; Mapp AP; Mizushina H
    Vision Res; 2007 Jul; 47(15):2067-75. PubMed ID: 17574645
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Distinguishing subcortical and cortical influences in visual attention. Subcortical attentional processing.
    Zackon DH; Casson EJ; Stelmach L; Faubert J; Racette L
    Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):364-71. PubMed ID: 9040469
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Control of vergence: gating among disparity inputs by voluntary target selection.
    Erkelens CJ; Collewijn H
    Exp Brain Res; 1991; 87(3):671-8. PubMed ID: 1783036
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Differences in perceived depth for temporally correlated and uncorrelated dynamic random-dot stereograms.
    Gheorghiu E; Erkelens CJ
    Vision Res; 2005 Jun; 45(12):1603-14. PubMed ID: 15781076
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Misperception of motion in depth originates from an incomplete transformation of retinal signals.
    Murdison TS; Leclercq G; Lefèvre P; Blohm G
    J Vis; 2019 Oct; 19(12):21. PubMed ID: 31647515
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Monocular versus binocular vision in postural control.
    Isotalo E; Kapoula Z; Feret PH; Gauchon K; Zamfirescu F; Gagey PM
    Auris Nasus Larynx; 2004 Mar; 31(1):11-7. PubMed ID: 15041048
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Monocular and Binocular Contributions to Oculomotor Plasticity.
    Maiello G; Harrison WJ; Bex PJ
    Sci Rep; 2016 Aug; 6():31861. PubMed ID: 27535336
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The variation of torsion with vergence and elevation.
    Porrill J; Ivins JP; Frisby JP
    Vision Res; 1999 Nov; 39(23):3934-50. PubMed ID: 10748926
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The binocular computation of visual direction.
    Mansfield JS; Legge GE
    Vision Res; 1996 Jan; 36(1):27-41. PubMed ID: 8746240
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Binocular visual acuity interaction in children: summation and inhibition.
    Lee YB; Choi DG
    Can J Ophthalmol; 2017 Apr; 52(2):214-218. PubMed ID: 28457294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.