These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

522 related articles for article (PubMed ID: 9275217)

  • 1. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals.
    Smith MA; Harris PL; Sayre LM; Perry G
    Proc Natl Acad Sci U S A; 1997 Sep; 94(18):9866-8. PubMed ID: 9275217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic, metallic, and mitotic sources of oxidative stress in Alzheimer disease.
    Smith MA; Nunomura A; Zhu X; Takeda A; Perry G
    Antioxid Redox Signal; 2000; 2(3):413-20. PubMed ID: 11229355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease: a central role for bound transition metals.
    Sayre LM; Perry G; Harris PL; Liu Y; Schubert KA; Smith MA
    J Neurochem; 2000 Jan; 74(1):270-9. PubMed ID: 10617129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a novel heme-binding protein, HasAh, in Alzheimer disease.
    Castellani RJ; Harris PL; Lecroisey A; Izadi-Pruneyre N; Wandersman C; Perry G; Smith MA
    Antioxid Redox Signal; 2000; 2(1):137-42. PubMed ID: 11232594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease.
    Perry G; Taddeo MA; Petersen RB; Castellani RJ; Harris PL; Siedlak SL; Cash AD; Liu Q; Nunomura A; Atwood CS; Smith MA
    Biometals; 2003 Mar; 16(1):77-81. PubMed ID: 12572666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is increased redox-active iron in Alzheimer disease a failure of the copper-binding protein ceruloplasmin?
    Castellani RJ; Smith MA; Nunomura A; Harris PL; Perry G
    Free Radic Biol Med; 1999 Jun; 26(11-12):1508-12. PubMed ID: 10401616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress and redox-active iron in Alzheimer's disease.
    Honda K; Casadesus G; Petersen RB; Perry G; Smith MA
    Ann N Y Acad Sci; 2004 Mar; 1012():179-82. PubMed ID: 15105265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free radical damage, iron, and Alzheimer's disease.
    Smith MA; Perry G
    J Neurol Sci; 1995 Dec; 134 Suppl():92-4. PubMed ID: 8847550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron.
    Honda K; Smith MA; Zhu X; Baus D; Merrick WC; Tartakoff AM; Hattier T; Harris PL; Siedlak SL; Fujioka H; Liu Q; Moreira PI; Miller FP; Nunomura A; Shimohama S; Perry G
    J Biol Chem; 2005 Jun; 280(22):20978-86. PubMed ID: 15767256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron: the Redox-active center of oxidative stress in Alzheimer disease.
    Castellani RJ; Moreira PI; Liu G; Dobson J; Perry G; Smith MA; Zhu X
    Neurochem Res; 2007 Oct; 32(10):1640-5. PubMed ID: 17508283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress, antioxidants, and Alzheimer disease.
    Rottkamp CA; Nunomura A; Raina AK; Sayre LM; Perry G; Smith MA
    Alzheimer Dis Assoc Disord; 2000; 14 Suppl 1():S62-6. PubMed ID: 10850732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of redox-active iron and copper to oxidative damage in Alzheimer disease.
    Castellani RJ; Honda K; Zhu X; Cash AD; Nunomura A; Perry G; Smith MA
    Ageing Res Rev; 2004 Jul; 3(3):319-26. PubMed ID: 15231239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-haem iron histochemistry of the normal and Alzheimer's disease hippocampus.
    Morris CM; Kerwin JM; Edwardson JA
    Neurodegeneration; 1994 Dec; 3(4):267-75. PubMed ID: 7842297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying, by first-principles simulations, Cu[amyloid-β] species making Fenton-type reactions in Alzheimer's disease.
    La Penna G; Hureau C; Andreussi O; Faller P
    J Phys Chem B; 2013 Dec; 117(51):16455-67. PubMed ID: 24313818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is Alzheimer's disease a mitochondrial disorder?
    Cash AD; Perry G; Ogawa O; Raina AK; Zhu X; Smith MA
    Neuroscientist; 2002 Oct; 8(5):489-96. PubMed ID: 12374431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative posttranslational modifications in Alzheimer disease. A possible pathogenic role in the formation of senile plaques and neurofibrillary tangles.
    Smith MA; Sayre LM; Monnier VM; Perry G
    Mol Chem Neuropathol; 1996; 28(1-3):41-8. PubMed ID: 8871940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three histidine residues of amyloid-beta peptide control the redox activity of copper and iron.
    Nakamura M; Shishido N; Nunomura A; Smith MA; Perry G; Hayashi Y; Nakayama K; Hayashi T
    Biochemistry; 2007 Nov; 46(44):12737-43. PubMed ID: 17929832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Toxicologic importance of iron and copper atoms and their relation to reactive oxygen metabolites].
    Duracková Z
    Bratisl Lek Listy; 1998 Jul; 99(7):351-8. PubMed ID: 9748724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alzheimer disease: evidence for a central pathogenic role of iron-mediated reactive oxygen species.
    Casadesus G; Smith MA; Zhu X; Aliev G; Cash AD; Honda K; Petersen RB; Perry G
    J Alzheimers Dis; 2004 Apr; 6(2):165-9. PubMed ID: 15096700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: A redox proteomics analysis.
    Sultana R; Boyd-Kimball D; Poon HF; Cai J; Pierce WM; Klein JB; Markesbery WR; Zhou XZ; Lu KP; Butterfield DA
    Neurobiol Aging; 2006 Jul; 27(7):918-25. PubMed ID: 15950321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.