These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

522 related articles for article (PubMed ID: 9275217)

  • 21. Alzheimer disease and the role of free radicals in the pathogenesis of the disease.
    Moreira PI; Santos MS; Oliveira CR; Shenk JC; Nunomura A; Smith MA; Zhu X; Perry G
    CNS Neurol Disord Drug Targets; 2008 Feb; 7(1):3-10. PubMed ID: 18289026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apolipoprotein E interaction with the neurofibrillary tangles and senile plaques in Alzheimer disease: implications for disease pathogenesis.
    Richey PL; Siedlak SL; Smith MA; Perry G
    Biochem Biophys Res Commun; 1995 Mar; 208(2):657-63. PubMed ID: 7695621
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A histochemical study of iron, transferrin, and ferritin in Alzheimer's diseased brains.
    Connor JR; Menzies SL; St Martin SM; Mufson EJ
    J Neurosci Res; 1992 Jan; 31(1):75-83. PubMed ID: 1613823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complex-formation and reduction of ferric iron by 2-oxo-4-thiomethylbutyric acid, and the production of hydroxyl radicals.
    Winston GW; Eibschutz OM; Strekas T; Cederbaum AI
    Biochem J; 1986 Apr; 235(2):521-9. PubMed ID: 3741403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidative stress and Alzheimer disease.
    Christen Y
    Am J Clin Nutr; 2000 Feb; 71(2):621S-629S. PubMed ID: 10681270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology.
    Schönheit B; Zarski R; Ohm TG
    Neurobiol Aging; 2004 Jul; 25(6):697-711. PubMed ID: 15165691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of iron as a mediator of oxidative stress in Alzheimer disease.
    Castellani RJ; Moreira PI; Perry G; Zhu X
    Biofactors; 2012; 38(2):133-8. PubMed ID: 22447715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone.
    Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ
    Free Radic Biol Med; 2015 Jan; 78():118-22. PubMed ID: 25451643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agrin is a major heparan sulfate proteoglycan accumulating in Alzheimer's disease brain.
    Verbeek MM; Otte-Höller I; van den Born J; van den Heuvel LP; David G; Wesseling P; de Waal RM
    Am J Pathol; 1999 Dec; 155(6):2115-25. PubMed ID: 10595940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A quantitative study of neurofibrillary tangles, senile plaques and astrocytes in the hippocampal subdivisions and entorhinal cortex in Alzheimer's disease, normal controls and non-Alzheimer neuropsychiatric diseases.
    Muramori F; Kobayashi K; Nakamura I
    Psychiatry Clin Neurosci; 1998 Dec; 52(6):593-9. PubMed ID: 9895207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potent antitumor activity of novel iron chelators derived from di-2-pyridylketone isonicotinoyl hydrazone involves fenton-derived free radical generation.
    Chaston TB; Watts RN; Yuan J; Richardson DR
    Clin Cancer Res; 2004 Nov; 10(21):7365-74. PubMed ID: 15534113
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Causes of oxidative stress in Alzheimer disease.
    Zhu X; Su B; Wang X; Smith MA; Perry G
    Cell Mol Life Sci; 2007 Sep; 64(17):2202-10. PubMed ID: 17605000
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibitors of free radical formation fail to attenuate direct beta-amyloid25-35 peptide-mediated neurotoxicity in rat hippocampal cultures.
    Lockhart BP; Benicourt C; Junien JL; Privat A
    J Neurosci Res; 1994 Nov; 39(4):494-505. PubMed ID: 7533847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative modification of cytochrome c by hydrogen peroxide.
    Kim NH; Jeong MS; Choi SY; Kang JH
    Mol Cells; 2006 Oct; 22(2):220-7. PubMed ID: 17085975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the possible role of iron-induced free radical peroxidation in neural degeneration in Alzheimer's disease.
    Richardson JS; Subbarao KV; Ang LC
    Ann N Y Acad Sci; 1992 May; 648():326-7. PubMed ID: 1322084
    [No Abstract]   [Full Text] [Related]  

  • 36. Iron: a pathological mediator of Alzheimer disease?
    Bishop GM; Robinson SR; Liu Q; Perry G; Atwood CS; Smith MA
    Dev Neurosci; 2002; 24(2-3):184-7. PubMed ID: 12401957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redox proteomics identification of oxidized proteins in Alzheimer's disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD.
    Sultana R; Boyd-Kimball D; Poon HF; Cai J; Pierce WM; Klein JB; Merchant M; Markesbery WR; Butterfield DA
    Neurobiol Aging; 2006 Nov; 27(11):1564-76. PubMed ID: 16271804
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elucidation of the interplay between Fe(II), Fe(III), and dopamine with relevance to iron solubilization and reactive oxygen species generation by catecholamines.
    Sun Y; Pham AN; Waite TD
    J Neurochem; 2016 Jun; 137(6):955-68. PubMed ID: 26991725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer's disease detected in vivo with magnetic resonance imaging.
    Raven EP; Lu PH; Tishler TA; Heydari P; Bartzokis G
    J Alzheimers Dis; 2013; 37(1):127-36. PubMed ID: 23792695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.