These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 927523)
1. Hydrolysis of polyesters by lipases. Tokiwa Y; Suzuki T Nature; 1977 Nov; 270(5632):76-8. PubMed ID: 927523 [No Abstract] [Full Text] [Related]
2. Degradation of aliphatic polyester films by commercially available lipases with special reference to rapid and complete degradation of poly(L-lactide) film by lipase PL derived from Alcaligenes sp. Hoshino A; Isono Y Biodegradation; 2002; 13(2):141-7. PubMed ID: 12449316 [TBL] [Abstract][Full Text] [Related]
3. Resolution of 4-amino-cyclopentanecarboxylic acid methyl esters using hydrolytic enzymes. Mahmoudian M; Baines BS; Dawson MJ; Lawrence GC Enzyme Microb Technol; 1992 Nov; 14(11):911-6. PubMed ID: 1368991 [TBL] [Abstract][Full Text] [Related]
4. Evidence for selective hydrolysis of aliphatic copolyesters induced by lipase catalysis. Rizzarelli P; Impallomeni G; Montaudo G Biomacromolecules; 2004; 5(2):433-44. PubMed ID: 15003003 [TBL] [Abstract][Full Text] [Related]
5. High-Throughput Analysis of Enzymatic Hydrolysis of Biodegradable Polyesters by Monitoring Cohydrolysis of a Polyester-Embedded Fluorogenic Probe. Zumstein MT; Kohler HE; McNeill K; Sander M Environ Sci Technol; 2017 Apr; 51(8):4358-4367. PubMed ID: 28140581 [TBL] [Abstract][Full Text] [Related]
6. [Effect of emulsifiers on the hydrolysis of solid fats by microorganism lipases]. Lobyreva LB; Marchenkova AI Mikrobiologiia; 1979; 48(1):53-6. PubMed ID: 106222 [TBL] [Abstract][Full Text] [Related]
7. Polycaprolactone depolymerase produced by the bacterium Alcaligenes faecalis. Oda Y; Oida N; Urakami T; Tonomura K FEMS Microbiol Lett; 1997 Jul; 152(2):339-43. PubMed ID: 9273313 [TBL] [Abstract][Full Text] [Related]
8. [Various lipases for producing products enriched with polyenic acids in fish fat hydrolysis]. Khasanov KhT; Iakubov IT; Epshteĭn LM; Akulin VN; Latyshev NA; Davranov K; Sas'ianov SP; Rakhimov MM Prikl Biokhim Mikrobiol; 1991; 27(4):554-7. PubMed ID: 1745648 [TBL] [Abstract][Full Text] [Related]
9. Correlation between chemical and solid-state structures and enzymatic hydrolysis in novel biodegradable polyesters. The case of poly(propylene alkanedicarboxylate)s. Bikiaris DN; Papageorgiou GZ; Giliopoulos DJ; Stergiou CA Macromol Biosci; 2008 Aug; 8(8):728-40. PubMed ID: 18615455 [TBL] [Abstract][Full Text] [Related]
10. [State of Fungal Lipases of Rhizopus microsporus, Penicillium sp. and Oospora lactis in Border Layers Water-Solid Phase and Factors Affecting Catalytic Properties of Enzymes]. Khasanov KhT; Davranov K; Rakhimov MM Prikl Biokhim Mikrobiol; 2015; 51(5):511-9. PubMed ID: 26596088 [TBL] [Abstract][Full Text] [Related]
11. Mixed carbonates as useful substrates for a fluorogenic assay for lipases and esterases. Zadlo A; Koszelewski D; Borys F; Ostaszewski R Chembiochem; 2015 Mar; 16(4):677-82. PubMed ID: 25648400 [TBL] [Abstract][Full Text] [Related]
12. Lipases from the genus Rhizopus: Characteristics, expression, protein engineering and application. Yu XW; Xu Y; Xiao R Prog Lipid Res; 2016 Oct; 64():57-68. PubMed ID: 27497512 [TBL] [Abstract][Full Text] [Related]
13. [Extracellular lipases of the fungus Rhizopus microsporus UzLT-1]. Davranov K; Diiarov Zh; Rizaeva M Prikl Biokhim Mikrobiol; 1978; 14(3):389-98. PubMed ID: 674116 [TBL] [Abstract][Full Text] [Related]
14. Purification and Properties of Extracellular Lipases with Transesterification Activity and 1,3-Regioselectivity from Takó M; KotogÁn A; Papp T; Kadaikunnan S; Alharbi NS; VÁgvölgyi C J Microbiol Biotechnol; 2017 Feb; 27(2):277-288. PubMed ID: 27780957 [No Abstract] [Full Text] [Related]
15. Hydration-aggregation pretreatment for drastically improving esterification activity of commercial lipases in non-aqueous media. Katayama M; Kuroiwa T; Suzuno K; Igusa A; Matsui T; Kanazawa A Enzyme Microb Technol; 2017 Oct; 105():30-37. PubMed ID: 28756858 [TBL] [Abstract][Full Text] [Related]
16. A multisubstrate assay for lipases/esterases: assessing acyl chain length selectivity by reverse-phase high-performance liquid chromatography. Divakar K; Gautam P Anal Biochem; 2014 Mar; 448():38-40. PubMed ID: 24316114 [TBL] [Abstract][Full Text] [Related]
17. Enzymes as Enhancers for the Biodegradation of Synthetic Polymers in Wastewater. Haernvall K; Zitzenbacher S; Biundo A; Yamamoto M; Schick MB; Ribitsch D; Guebitz GM Chembiochem; 2018 Feb; 19(4):317-325. PubMed ID: 29119717 [TBL] [Abstract][Full Text] [Related]
18. Stereoselectivity of the generation of 3-mercaptohexanal and 3-mercaptohexanol by lipase-catalyzed hydrolysis of 3-acetylthioesters. Wakabayashi H; Wakabayashi M; Eisenreich W; Engel KH J Agric Food Chem; 2003 Jul; 51(15):4349-55. PubMed ID: 12848509 [TBL] [Abstract][Full Text] [Related]
19. Pyrenemethyl laurate, a new fluorescent substrate for continuous kinetic determination of lipase activity. Nègre A; Salvayre R; Dagan A; Gatt S Biochim Biophys Acta; 1989 Nov; 1006(1):84-8. PubMed ID: 2804074 [TBL] [Abstract][Full Text] [Related]
20. A low background high-throughput screening (HTS) fluorescence assay for lipases and esterases using acyloxymethylethers of umbelliferone. Leroy E; Bensel N; Reymond JL Bioorg Med Chem Lett; 2003 Jul; 13(13):2105-8. PubMed ID: 12798314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]