These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 927593)

  • 1. [Intramodal and interaural specificity of the human slow auditory evoked potential].
    Kevanishvili ZSh; Pantev Kh; Khachidze OA; Galle E
    Neirofiziologiia; 1977; 9(5):460-8. PubMed ID: 927593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramodal and interaural interactions of the human slow auditory evoked potential.
    Kevanishvili ZS; Pantev C; Khachidze OA
    Arch Otorhinolaryngol; 1979; 222(3):211-19. PubMed ID: 444155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The relationship between the parameters of the early and late oscillations of human cortical evoked potentials and the rhythm of acoustic stimulation].
    Kevanishvili ZSh; Fraĭgang B; Khachidze OA; Afonchenko VS; Pantev Kh
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1976; 26(1):153-62. PubMed ID: 1274432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Auditory-evoked responses to a monaural or a binaural click, recorded from the vertex, as in two temporal derivations; effect of interaural time differences (author's transl)].
    Botte MC; Chocholle R
    Audiology; 1976; 15(1):50-62. PubMed ID: 1252190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Late auditory evoked potentials asymmetry revisited.
    Hine J; Debener S
    Clin Neurophysiol; 2007 Jun; 118(6):1274-85. PubMed ID: 17462945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Evoked potentials to sound in the visual cortex in the cat].
    Babenko VV; Chipizubova MK
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1983; 33(4):717-22. PubMed ID: 6624256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human slow auditory evoked potentials during natural and drug-induced sleep.
    Kevanishvili ZS; Von Specht H
    Electroencephalogr Clin Neurophysiol; 1979 Sep; 47(3):280-8. PubMed ID: 90599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human auditory steady state responses to binaural and monaural beats.
    Schwarz DW; Taylor P
    Clin Neurophysiol; 2005 Mar; 116(3):658-68. PubMed ID: 15721080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral composition of concurrent noise affects neuronal sensitivity to interaural time differences of tones in the dorsal nucleus of the lateral lemniscus.
    Siveke I; Leibold C; Grothe B
    J Neurophysiol; 2007 Nov; 98(5):2705-15. PubMed ID: 17699697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaural delay-dependent changes in the binaural interaction component of the guinea pig brainstem responses.
    Goksoy C; Demirtas S; Yagcioglu S; Ungan P
    Brain Res; 2005 Aug; 1054(2):183-91. PubMed ID: 16054603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory evoked fields to variations of interaural time delay.
    Soeta Y; Nakagawa S; Tonoike M
    Neurosci Lett; 2005 Aug; 383(3):311-6. PubMed ID: 15955427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaural delay-dependent changes in the binaural difference potential of the human auditory brain stem response.
    Riedel H; Kollmeier B
    Hear Res; 2006 Aug; 218(1-2):5-19. PubMed ID: 16762518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural correlates of the precedence effect in auditory evoked potentials.
    Damaschke J; Riedel H; Kollmeier B
    Hear Res; 2005 Jul; 205(1-2):157-71. PubMed ID: 15953525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of externalization and spatial cues on the generation of auditory brainstem responses and middle latency responses.
    Junius D; Riedel H; Kollmeier B
    Hear Res; 2007 Mar; 225(1-2):91-104. PubMed ID: 17270375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving precise temporal processing properties of the auditory system using continuous stimuli.
    Lalor EC; Power AJ; Reilly RB; Foxe JJ
    J Neurophysiol; 2009 Jul; 102(1):349-59. PubMed ID: 19439675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Electrophysiologic evaluation of the frequency selectivity by conversion of concurrent waves with the aid of a 40 Hz middle latency response].
    Coene P; Lurquin P
    Acta Otorhinolaryngol Belg; 1988; 42(5):587-97. PubMed ID: 3242347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How the human auditory system treats repetition amongst change.
    Horváth J; Winkler I
    Neurosci Lett; 2004 Sep; 368(2):157-61. PubMed ID: 15351440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intensity changes in a continuous tone: auditory cortical potentials comparison with frequency changes.
    Dimitrijevic A; Lolli B; Michalewski HJ; Pratt H; Zeng FG; Starr A
    Clin Neurophysiol; 2009 Feb; 120(2):374-83. PubMed ID: 19112047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Relation between midbrain auditory center neuronal responses and sound on-off time ratio in the frog].
    Bibikov NG
    Fiziol Zh SSSR Im I M Sechenova; 1981 May; 67(5):657-64. PubMed ID: 6269909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auditory pre-attentive processing of Chinese tones.
    Yang LJ; Cao KL; Wei CG; Liu YZ
    Chin Med J (Engl); 2008 Dec; 121(23):2429-33. PubMed ID: 19102963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.