BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 9276)

  • 21. Deflavination of flavo-oxidases by nucleophilic reagents.
    Zlateva T; Boteva R; Filippi B; Veenhuis M; van der Klei IJ
    Biochim Biophys Acta; 2001 Aug; 1548(2):213-9. PubMed ID: 11513966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intramolecular hydrogen bonding in flavin adenine dinucleotide.
    Raszka M; Kaplan NO
    Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4546-50. PubMed ID: 4373718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Covalent flavinylation of L-aspartate oxidase from Escherichia coli using N6-(6-carboxyhexyl)-FAD succinimidoester.
    Negri A; Buckmann AF; Tedeschi G; Stocker A; Ceciliani F; Treu C; Ronchi S
    J Protein Chem; 1999 Aug; 18(6):671-6. PubMed ID: 10609643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding of adducts of NAD(P) and enolizable ketones to NAD(P)-dependent dehydrogenases.
    Marchand J; Torreilles J; Guerin MC; Descomps B; De Paulet AC; Gabriel M; Larcher D
    Biochim Biophys Acta; 1982 Sep; 707(1):7-13. PubMed ID: 6753938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differences in environment of FAD between NAD-dependent and O2-dependent types of rat liver xanthine dehydrogenase shown by active site probe study.
    Saito T; Nishino T; Massey V
    J Biol Chem; 1989 Sep; 264(27):15930-5. PubMed ID: 2777772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Riboflavin 5'-pyrophosphate: a contaminant of commercial FAD, a coenzyme for FAD-dependent oxidases, and an inhibitor of FAD synthetase.
    Hartman HA; Edmondson DE; McCormick DB
    Anal Biochem; 1992 May; 202(2):348-55. PubMed ID: 1355635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flavin-dependent alcohol oxidase from the yeast Pichia pinus. Spatial localization of the coenzyme FAD in the protein structure: hot-tritium bombardment and ESR experiments.
    Averbakh AZ; Pekel ND; Seredenko VI; Kulikov AV; Gvozdev RI; Rudakova IP
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):601-4. PubMed ID: 7654201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photodependent inhibition of rat liver NAD(P)H:quinone acceptor oxidoreductase by (A)-2-azido-NAD+ and (A)-8-azido-NAD.
    Deng PS; Zhao SH; Iyanagi T; Chen SA
    Biochemistry; 1991 Jul; 30(28):6942-8. PubMed ID: 1906347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of the hydride transfer stereospecificity of nicotinamide adenine dinucleotide linked oxidoreductases by proton magnetic resonance.
    Arnold LJ; You K; Allison WS; Kaplan NO
    Biochemistry; 1976 Nov; 15(22):4844-9. PubMed ID: 186097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binding of NAD and NADP dimers to NAD- and NADP-dependent dehydrogenases.
    Kovár J; Klukanová H
    Biochim Biophys Acta; 1984 Jul; 788(1):98-109. PubMed ID: 6378255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzyme-Mediated Conversion of Flavin Adenine Dinucleotide (FAD) to 8-Formyl FAD in Formate Oxidase Results in a Modified Cofactor with Enhanced Catalytic Properties.
    Robbins JM; Souffrant MG; Hamelberg D; Gadda G; Bommarius AS
    Biochemistry; 2017 Jul; 56(29):3800-3807. PubMed ID: 28640638
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on the properties of 1,N 6 -ethenoadenine derivatives of various coenzymes.
    Lee CY; Everse J
    Arch Biochem Biophys; 1973 Jul; 157(1):83-90. PubMed ID: 4352059
    [No Abstract]   [Full Text] [Related]  

  • 33. Synthesis and biological activity of N6-(N[(4-azido-3,5,6-trifluoro)-pyridin-2-yl]-2-aminoethyl)-adenosine 5'-monophosphate, a new AMP photoactivatable derivative. Covalent modification of horse liver alcohol dehydrogenase.
    Sicsic S; Leonil J; Le Goffic F
    Eur J Biochem; 1989 Feb; 179(2):435-40. PubMed ID: 2917573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and properties of 3-halopyridine--adenine dinucleotides, NAD+ analogues and model compounds.
    Abdallah MA; Biellmann JF; Samama JP; Wrixon AD
    Eur J Biochem; 1976 May; 64(2):351-60. PubMed ID: 179812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discovery of a third coenzyme in sarcosine oxidase.
    Willie A; Jorns MS
    Biochemistry; 1995 Dec; 34(51):16703-7. PubMed ID: 8527444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ROLE OF SEMIQUINONES IN FLAVOPROTEIN CATALYSIS.
    MASSEY V; GIBSON QH
    Fed Proc; 1964; 23():18-29. PubMed ID: 14114688
    [No Abstract]   [Full Text] [Related]  

  • 37. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. D-aspartate oxidase from beef kidney. Purification and properties.
    Negri A; Massey V; Williams CH
    J Biol Chem; 1987 Jul; 262(21):10026-34. PubMed ID: 3611051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of barbiturate inhibition on purified flavoenzymes.
    Giuditta A; Casola L
    Biochim Biophys Acta; 1965 Oct; 110(1):17-31. PubMed ID: 4379501
    [No Abstract]   [Full Text] [Related]  

  • 40. 8-Spin-label nicotinamide adenine dinucleotide, synthesis and properties of a new spin-labelled coenzyme.
    Wenzel HR; Trommer WE
    FEBS Lett; 1977 Jun; 78(2):184-8. PubMed ID: 195838
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.