These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 9276174)

  • 1. Influence of low and high frequency inputs on spike timing in visual cortical neurons.
    Nowak LG; Sanchez-Vives MV; McCormick DA
    Cereb Cortex; 1997 Sep; 7(6):487-501. PubMed ID: 9276174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulus-selective spiking is driven by the relative timing of synchronous excitation and disinhibition in cat striate neurons in vivo.
    Azouz R; Gray CM
    Eur J Neurosci; 2008 Oct; 28(7):1286-300. PubMed ID: 18973556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Barrages of synaptic activity control the gain and sensitivity of cortical neurons.
    Shu Y; Hasenstaub A; Badoual M; Bal T; McCormick DA
    J Neurosci; 2003 Nov; 23(32):10388-401. PubMed ID: 14614098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic origin and stimulus dependency of neuronal oscillatory activity in the primary visual cortex of the cat.
    Bringuier V; Frégnac Y; Baranyi A; Debanne D; Shulz DE
    J Physiol; 1997 May; 500 ( Pt 3)(Pt 3):751-74. PubMed ID: 9161989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillatory discharge in the visual system: does it have a functional role?
    Ghose GM; Freeman RD
    J Neurophysiol; 1992 Nov; 68(5):1558-74. PubMed ID: 1479430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks.
    Hasenstaub A; Shu Y; Haider B; Kraushaar U; Duque A; McCormick DA
    Neuron; 2005 Aug; 47(3):423-35. PubMed ID: 16055065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons.
    Brumberg JC; Nowak LG; McCormick DA
    J Neurosci; 2000 Jul; 20(13):4829-43. PubMed ID: 10864940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma-frequency fluctuations of the membrane potential and response selectivity in visual cortical neurons.
    Volgushev M; Pernberg J; Eysel UT
    Eur J Neurosci; 2003 May; 17(9):1768-76. PubMed ID: 12752775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliable control of spike rate and spike timing by rapid input transients in cerebellar stellate cells.
    Suter KJ; Jaeger D
    Neuroscience; 2004; 124(2):305-17. PubMed ID: 14980381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedforward Thalamocortical Connectivity Preserves Stimulus Timing Information in Sensory Pathways.
    Wang HP; Garcia JW; Sabottke CF; Spencer DJ; Sejnowski TJ
    J Neurosci; 2019 Sep; 39(39):7674-7688. PubMed ID: 31270157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses.
    Nowak LG; Azouz R; Sanchez-Vives MV; Gray CM; McCormick DA
    J Neurophysiol; 2003 Mar; 89(3):1541-66. PubMed ID: 12626627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small modulation of ongoing cortical dynamics by sensory input during natural vision.
    Fiser J; Chiu C; Weliky M
    Nature; 2004 Sep; 431(7008):573-8. PubMed ID: 15457262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noisy Juxtacellular Stimulation In Vivo Leads to Reliable Spiking and Reveals High-Frequency Coding in Single Neurons.
    Doose J; Doron G; Brecht M; Lindner B
    J Neurosci; 2016 Oct; 36(43):11120-11132. PubMed ID: 27798191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Millisecond precision temporal encoding of stimulus features during cortically generated gamma oscillations in the rat somatosensory cortex.
    Bessaih T; Higley MJ; Contreras D
    J Physiol; 2018 Feb; 596(3):515-534. PubMed ID: 29265375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic discharge patterns and somatosensory inputs for neurons in raccoon primary somatosensory cortex.
    Istvan PJ; Zarzecki P
    J Neurophysiol; 1994 Dec; 72(6):2827-39. PubMed ID: 7897492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel mechanism of response selectivity of neurons in cat visual cortex.
    Volgushev M; Pernberg J; Eysel UT
    J Physiol; 2002 Apr; 540(Pt 1):307-20. PubMed ID: 11927689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Firing pattern modulation by oscillatory input in supragranular pyramidal neurons.
    Brumberg JC
    Neuroscience; 2002; 114(1):239-46. PubMed ID: 12207969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo.
    Sanchez-Vives MV; Nowak LG; McCormick DA
    J Neurosci; 2000 Jun; 20(11):4267-85. PubMed ID: 10818163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo.
    Azouz R; Gray CM
    Proc Natl Acad Sci U S A; 2000 Jul; 97(14):8110-5. PubMed ID: 10859358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.