These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9276512)

  • 21. Loss of XChk1 function triggers apoptosis after the midblastula transition in Xenopus laevis embryos.
    Carter AD; Sible JC
    Mech Dev; 2003 Mar; 120(3):315-23. PubMed ID: 12591601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spindle assembly checkpoint acquisition at the mid-blastula transition.
    Zhang M; Kothari P; Lampson MA
    PLoS One; 2015; 10(3):e0119285. PubMed ID: 25741707
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A chemical genetic screen for cell cycle inhibitors in zebrafish embryos.
    Murphey RD; Stern HM; Straub CT; Zon LI
    Chem Biol Drug Des; 2006 Oct; 68(4):213-9. PubMed ID: 17105485
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DNA damage signaling in early Xenopus embryos.
    Peng A; Lewellyn AL; Maller JL
    Cell Cycle; 2008 Jan; 7(1):3-6. PubMed ID: 18196968
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differences in induction of p53, p21WAF1 and apoptosis in relation to cell cycle phase of MCF-7 cells treated with camptothecin.
    Deptala A; Li X; Bedner E; Cheng W; Traganos F; Darzynkiewicz Z
    Int J Oncol; 1999 Nov; 15(5):861-71. PubMed ID: 10536167
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coordination of development and metabolism in the pre-midblastula transition zebrafish embryo.
    Mendelsohn BA; Gitlin JD
    Dev Dyn; 2008 Jul; 237(7):1789-98. PubMed ID: 18521947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zygotic genome activation triggers the DNA replication checkpoint at the midblastula transition.
    Blythe SA; Wieschaus EF
    Cell; 2015 Mar; 160(6):1169-81. PubMed ID: 25748651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Drosophila grapes gene is related to checkpoint gene chk1/rad27 and is required for late syncytial division fidelity.
    Fogarty P; Campbell SD; Abu-Shumays R; Phalle BS; Yu KR; Uy GL; Goldberg ML; Sullivan W
    Curr Biol; 1997 Jun; 7(6):418-26. PubMed ID: 9197245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excess histone H3 is a competitive Chk1 inhibitor that controls cell-cycle remodeling in the early Drosophila embryo.
    Shindo Y; Amodeo AA
    Curr Biol; 2021 Jun; 31(12):2633-2642.e6. PubMed ID: 33848457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of a DNA damaging agent on embryonic cell cycles of the cnidarian Hydractinia echinata.
    Su TT
    PLoS One; 2010 Jul; 5(7):e11760. PubMed ID: 20668699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of the Cdc2/cyclin B complex in Xenopus egg extracts arrested at a G2/M checkpoint with DNA synthesis inhibitors.
    Kumagai A; Dunphy WG
    Mol Biol Cell; 1995 Feb; 6(2):199-213. PubMed ID: 7787246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mimosine differentially inhibits DNA replication and cell cycle progression in somatic cells compared to embryonic cells of Xenopus laevis.
    Wang Y; Zhao J; Clapper J; Martin LD; Du C; DeVore ER; Harkins K; Dobbs DL; Benbow RM
    Exp Cell Res; 1995 Mar; 217(1):84-91. PubMed ID: 7867725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From egg to gastrula: how the cell cycle is remodeled during the Drosophila mid-blastula transition.
    Farrell JA; O'Farrell PH
    Annu Rev Genet; 2014; 48():269-94. PubMed ID: 25195504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Timing the Drosophila Mid-Blastula Transition: A Cell Cycle-Centered View.
    Yuan K; Seller CA; Shermoen AW; O'Farrell PH
    Trends Genet; 2016 Aug; 32(8):496-507. PubMed ID: 27339317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphogenesis and regulated gene activity are independent of DNA replication in Xenopus embryos.
    Rollins MB; Andrews MT
    Development; 1991 Jun; 112(2):559-69. PubMed ID: 1794324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell cycle arrest in G2/M promotes early steps of infection by human immunodeficiency virus.
    Groschel B; Bushman F
    J Virol; 2005 May; 79(9):5695-704. PubMed ID: 15827184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells.
    Jacob S; Aguado M; Fallik D; Praz F
    Cancer Res; 2001 Sep; 61(17):6555-62. PubMed ID: 11522654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of clam oocyte extracts for cell cycle studies.
    Ruderman JV; Sudakin V; Hershko A
    Methods Enzymol; 1997; 283():614-22. PubMed ID: 9251052
    [No Abstract]   [Full Text] [Related]  

  • 39. Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes.
    Shao RG; Cao CX; Zhang H; Kohn KW; Wold MS; Pommier Y
    EMBO J; 1999 Mar; 18(5):1397-406. PubMed ID: 10064605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of cell-cycle-arrest agents on cleavage and development of mouse embryos.
    Samaké S; Smith LC
    J Exp Zool; 1996 Feb; 274(2):111-20. PubMed ID: 8742691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.