These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 9276674)
1. Refolding of urea-denatured ovalbumin that comprises non-native disulfide isomers. Onda M; Tatsumi E; Takahashi N; Hirose M J Biochem; 1997 Jul; 122(1):83-9. PubMed ID: 9276674 [TBL] [Abstract][Full Text] [Related]
2. Refolding process of ovalbumin from urea-denatured state. Evidence for the involvement of nonproductive side chain interactions in an early intermediate. Onda M; Tatsumi E; Takahashi N; Hirose M J Biol Chem; 1997 Feb; 272(7):3973-9. PubMed ID: 9020102 [TBL] [Abstract][Full Text] [Related]
3. Refolding mechanism of ovalbumin: investigation by using a starting urea-denatured disulfide isomer with mispaired CYS367-CYS382. Onda M; Hirose M J Biol Chem; 2003 Jun; 278(26):23600-9. PubMed ID: 12711610 [TBL] [Abstract][Full Text] [Related]
4. Conformational state of ovalbumin at acidic pH as evaluated by a novel approach utilizing intrachain sulfhydryl-mixed disulfide exchange reactions. Tatsumi E; Yoshimatsu D; Hirose M Biochemistry; 1998 Sep; 37(35):12351-9. PubMed ID: 9724549 [TBL] [Abstract][Full Text] [Related]
5. Temperature control for kinetic refolding of heat-denatured ovalbumin. Tani F; Shirai N; Onishi T; Venelle F; Yasumoto K; Doi E Protein Sci; 1997 Jul; 6(7):1491-502. PubMed ID: 9232650 [TBL] [Abstract][Full Text] [Related]
6. Denatured state of ovalbumin in high concentrations of urea as evaluated by disulfide rearrangement analysis. Tatsumi E; Takahashi N; Hirose M J Biol Chem; 1994 Nov; 269(45):28062-7. PubMed ID: 7961742 [TBL] [Abstract][Full Text] [Related]
7. Reversible denaturation of disulfide-reduced ovalbumin and its reoxidation generating the native cystine cross-link. Takahashi N; Hirose M J Biol Chem; 1992 Jun; 267(16):11565-72. PubMed ID: 1597484 [TBL] [Abstract][Full Text] [Related]
8. Highly ordered molten globule-like state of ovalbumin at acidic pH: native-like fragmentation by protease and selective modification of Cys367 with dithiodipyridine. Tatsumi E; Hirose M J Biochem; 1997 Aug; 122(2):300-8. PubMed ID: 9378706 [TBL] [Abstract][Full Text] [Related]
9. Role of an intrachain disulfide bond in the conformation and stability of ovalbumin. Takahashi N; Koseki T; Doi E; Hirose M J Biochem; 1991 Jun; 109(6):846-51. PubMed ID: 1939004 [TBL] [Abstract][Full Text] [Related]
10. Identification of equilibrium and kinetic intermediates involved in folding of urea-denatured creatine kinase. Zhu L; Fan YX; Zhou JM Biochim Biophys Acta; 2001 Jan; 1544(1-2):320-32. PubMed ID: 11341941 [TBL] [Abstract][Full Text] [Related]
11. Participation of cysteine 30 residue in the folding process of ovalbumin evaluated in a refolding experiment using cysteine mutants. Ishimaru T; Ito K; Tanaka M; Matsudomi N Biochem Biophys Res Commun; 2018 Jan; 495(1):1061-1066. PubMed ID: 29175210 [TBL] [Abstract][Full Text] [Related]
12. Sequential comparison of peptides containing half-cystine residues from ovalbumins of six avian species. Sun Y; Hayakawa S Biosci Biotechnol Biochem; 2001 Dec; 65(12):2589-96. PubMed ID: 11826952 [TBL] [Abstract][Full Text] [Related]
13. Conformational state of disulfide-reduced ovalbumin at acidic pH. Tatsumi E; Yoshimatsu D; Hirose M Biosci Biotechnol Biochem; 1999 Jul; 63(7):1285-90. PubMed ID: 10478455 [TBL] [Abstract][Full Text] [Related]
14. Comparing the refolding and reoxidation of recombinant porcine growth hormone from a urea denatured state and from Escherichia coli inclusion bodies. Cardamone M; Puri NK; Brandon MR Biochemistry; 1995 May; 34(17):5773-94. PubMed ID: 7727438 [TBL] [Abstract][Full Text] [Related]
15. Unassisted refolding of urea-denatured arginine kinase from shrimp Feneropenaeus chinensis: evidence for two equilibrium intermediates in the refolding pathway. Pan JC; Yu Z; Su XY; Sun YQ; Rao XM; Zhou HM Protein Sci; 2004 Jul; 13(7):1892-901. PubMed ID: 15215531 [TBL] [Abstract][Full Text] [Related]
16. Role of the intrachain disulfide bond of ovalbumin during conversion into S-ovalbumin. Takahashi N; Tatsumi E; Orita T; Hirose M Biosci Biotechnol Biochem; 1996 Sep; 60(9):1464-8. PubMed ID: 8987595 [TBL] [Abstract][Full Text] [Related]
17. Structural properties of recombinant ovalbumin and its transformation into a thermostabilized form by alkaline treatment. Arii Y; Takahashi N; Tatsumi E; Hirose M Biosci Biotechnol Biochem; 1999 Aug; 63(8):1392-9. PubMed ID: 10501000 [TBL] [Abstract][Full Text] [Related]
18. The burst-phase intermediate in the refolding of beta-lactoglobulin studied by stopped-flow circular dichroism and absorption spectroscopy. Kuwajima K; Yamaya H; Sugai S J Mol Biol; 1996 Dec; 264(4):806-22. PubMed ID: 8980687 [TBL] [Abstract][Full Text] [Related]
19. The refolding of cis- and trans-peptidylprolyl isomers of barstar. Schreiber G; Fersht AR Biochemistry; 1993 Oct; 32(41):11195-203. PubMed ID: 8218183 [TBL] [Abstract][Full Text] [Related]
20. Unfolding and refolding pathways of a major kinetic trap in the oxidative folding of alpha-lactalbumin. Salamanca S; Chang JY Biochemistry; 2005 Jan; 44(2):744-50. PubMed ID: 15641801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]