BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 9276751)

  • 1. Probing the structure of the diphtheria toxin channel. Reactivity in planar lipid bilayer membranes of cysteine-substituted mutant channels with methanethiosulfonate derivatives.
    Huynh PD; Cui C; Zhan H; Oh KJ; Collier RJ; Finkelstein A
    J Gen Physiol; 1997 Sep; 110(3):229-42. PubMed ID: 9276751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction of diphtheria toxin channels with sulfhydryl-specific reagents: observation of chemical reactions at the single molecule level.
    Mindell JA; Zhan H; Huynh PD; Collier RJ; Finkelstein A
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5272-6. PubMed ID: 7515494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the membrane topography of the TH6-TH7 segment of the diphtheria toxin T-domain channel.
    Kienker PK; Wu Z; Finkelstein A
    J Gen Physiol; 2015 Feb; 145(2):107-25. PubMed ID: 25582482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topography of the TH5 Segment in the Diphtheria Toxin T-Domain Channel.
    Kienker PK; Wu Z; Finkelstein A
    J Membr Biol; 2016 Apr; 249(1-2):181-96. PubMed ID: 26645703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topography of diphtheria Toxin's T domain in the open channel state.
    Senzel L; Gordon M; Blaustein RO; Oh KJ; Collier RJ; Finkelstein A
    J Gen Physiol; 2000 Apr; 115(4):421-34. PubMed ID: 10736310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function relationships in diphtheria toxin channels: I. Determining a minimal channel-forming domain.
    Silverman JA; Mindell JA; Zhan H; Finkelstein A; Collier RJ
    J Membr Biol; 1994 Jan; 137(1):17-28. PubMed ID: 7516432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function relationships in diphtheria toxin channels: III. Residues which affect the cis pH dependence of channel conductance.
    Mindell JA; Silverman JA; Collier RJ; Finkelstein A
    J Membr Biol; 1994 Jan; 137(1):45-57. PubMed ID: 7516434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformation of the diphtheria toxin T domain in membranes: a site-directed spin-labeling study of the TH8 helix and TL5 loop.
    Oh KJ; Zhan H; Cui C; Altenbach C; Hubbell WL; Collier RJ
    Biochemistry; 1999 Aug; 38(32):10336-43. PubMed ID: 10441127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of residues lining the anthrax protective antigen channel.
    Benson EL; Huynh PD; Finkelstein A; Collier RJ
    Biochemistry; 1998 Mar; 37(11):3941-8. PubMed ID: 9521715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure function relationships in diphtheria toxin channels: II. A residue responsible for the channel's dependence on trans pH.
    Mindell JA; Silverman JA; Collier RJ; Finkelstein A
    J Membr Biol; 1994 Jan; 137(1):29-44. PubMed ID: 7516433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PA63 channel of anthrax toxin: an extended beta-barrel.
    Nassi S; Collier RJ; Finkelstein A
    Biochemistry; 2002 Feb; 41(5):1445-50. PubMed ID: 11814336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic transitions of the transmembrane domain of diphtheria toxin: disulfide trapping and fluorescence proximity studies.
    Zhan H; Choe S; Huynh PD; Finkelstein A; Eisenberg D; Collier RJ
    Biochemistry; 1994 Sep; 33(37):11254-63. PubMed ID: 7537085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of shallow and deep membrane-penetrating forms of diphtheria toxin T domain that are regulated by protein concentration and bilayer width.
    Wang Y; Malenbaum SE; Kachel K; Zhan H; Collier RJ; London E
    J Biol Chem; 1997 Oct; 272(40):25091-8. PubMed ID: 9312118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of the helical hairpin region of diphtheria toxin transmembrane domain.
    Silverman JA; Mindell JA; Finkelstein A; Shen WH; Collier RJ
    J Biol Chem; 1994 Sep; 269(36):22524-32. PubMed ID: 7521329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of the beta subunit M2 segment to the ion-conducting pathway of the acetylcholine receptor.
    Zhang H; Karlin A
    Biochemistry; 1998 Jun; 37(22):7952-64. PubMed ID: 9609688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior of diphtheria toxin T domain containing substitutions that block normal membrane insertion at Pro345 and Leu307: control of deep membrane insertion and coupling between deep insertion of hydrophobic subdomains.
    Zhao G; London E
    Biochemistry; 2005 Mar; 44(11):4488-98. PubMed ID: 15766279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct gating of ATP-activated ion channels (P2X2 receptors) by lipophilic attachment at the outer end of the second transmembrane domain.
    Rothwell SW; Stansfeld PJ; Bragg L; Verkhratsky A; North RA
    J Biol Chem; 2014 Jan; 289(2):618-26. PubMed ID: 24273165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of Glu 349 and Asp 352 in membrane insertion and translocation by diphtheria toxin.
    Kaul P; Silverman J; Shen WH; Blanke SR; Huynh PD; Finkelstein A; Collier RJ
    Protein Sci; 1996 Apr; 5(4):687-92. PubMed ID: 8845758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The diphtheria toxin channel-forming T-domain translocates its own NH2-terminal region and the catalytic domain across planar phospholipid bilayers.
    Finkelstein A; Oh KJ; Senzel L; Gordon M; Blaustein RO; Collier RJ
    Int J Med Microbiol; 2000 Oct; 290(4-5):435-40. PubMed ID: 11111923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the pore structure of the influenza A virus M(2) ion channel by the substituted-cysteine accessibility method.
    Shuck K; Lamb RA; Pinto LH
    J Virol; 2000 Sep; 74(17):7755-61. PubMed ID: 10933681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.