BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 9277138)

  • 1. Potential involvement of both type I and type II mechanisms in M13 virus inactivation by methylene blue photosensitization.
    Abe H; Ikebuchi K; Wagner SJ; Kuwabara M; Kamo N; Sekiguchi S
    Photochem Photobiol; 1997 Aug; 66(2):204-8. PubMed ID: 9277138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting M13 bacteriophage inactivation by methylene blue photosensitization.
    Abe H; Wagner SJ; Kuwabara M; Kamo N; Ikebuchi K; Sekiguchi S
    Photochem Photobiol; 1997 May; 65(5):873-6. PubMed ID: 9155260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of viruses by chemically and photochemically generated singlet molecular oxygen.
    Müller-Breitkreutz K; Mohr H; Briviba K; Sies H
    J Photochem Photobiol B; 1995 Sep; 30(1):63-70. PubMed ID: 8558363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylene blue and rose bengal photoinactivation of RNA bacteriophages: comparative studies of 8-oxoguanine formation in isolated RNA.
    Schneider JE; Phillips JR; Pye Q; Maidt ML; Price S; Floyd RA
    Arch Biochem Biophys; 1993 Feb; 301(1):91-7. PubMed ID: 8382909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of viral DNA, protein and envelope damage after methylene blue, phthalocyanine derivative or merocyanine 540 photosensitization.
    Abe H; Wagner SJ
    Photochem Photobiol; 1995 Apr; 61(4):402-9. PubMed ID: 7740085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methylene blue photoinactivation of RNA viruses.
    Floyd RA; Schneider JE; Dittmer DP
    Antiviral Res; 2004 Mar; 61(3):141-51. PubMed ID: 15168794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting virus photoinactivation by a series of phenothiazine dyes.
    Wagner SJ; Skripchenko A; Robinette D; Foley JW; Cincotta L
    Photochem Photobiol; 1998 Mar; 67(3):343-9. PubMed ID: 9523534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of reactive oxygen species in Staphylococcus aureus photoinactivation by methylene blue.
    Sabbahi S; Alouini Z; Jemli M; Boudabbous A
    Water Sci Technol; 2008; 58(5):1047-54. PubMed ID: 18824803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrimidine dimer formation and oxidative damage in M13 bacteriophage inactivation by ultraviolet C irradiation.
    Kurosaki Y; Abe H; Morioka H; Hirayama J; Ikebuchi K; Kamo N; Nikaido O; Azuma H; Ikeda H
    Photochem Photobiol; 2003 Oct; 78(4):349-54. PubMed ID: 14626662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NF-kappa B transcription factor and human immunodeficiency virus type 1 (HIV-1) activation by methylene blue photosensitization.
    Piret B; Legrand-Poels S; Sappey C; Piette J
    Eur J Biochem; 1995 Mar; 228(2):447-55. PubMed ID: 7705361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosensitized production of singlet oxygen.
    Kochevar IE; Redmond RW
    Methods Enzymol; 2000; 319():20-8. PubMed ID: 10907495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential mechanisms of photodynamic inactivation of virus by methylene blue. I. RNA-protein crosslinks and other oxidative lesions in Q beta bacteriophage.
    Schneider JE; Tabatabaie T; Maidt L; Smith RH; Nguyen X; Pye Q; Floyd RA
    Photochem Photobiol; 1998 Mar; 67(3):350-7. PubMed ID: 9523535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential sensitivities of viruses in red cell suspensions to methylene blue photosensitization.
    Wagner SJ; Robinette D; Storry J; Chen XY; Shumaker J; Benade L
    Transfusion; 1994 Jun; 34(6):521-6. PubMed ID: 8023394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of dimethylmethylene blue for virus photoinactivation of red cell suspensions.
    Wagner SJ; Skripchenko A; Robinette D; Mallory DA; Hirayama J; Cincotta L; Foley J
    Dev Biol (Basel); 2000; 102():125-9. PubMed ID: 10794099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinactivation of vesicular stomatitis virus with fullerene conjugated with methoxy polyethylene glycol amine.
    Hirayama J; Abe H; Kamo N; Shinbo T; Ohnishi-Yamada Y; Kurosawa S; Ikebuchi K; Sekiguchi S
    Biol Pharm Bull; 1999 Oct; 22(10):1106-9. PubMed ID: 10549864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of reactive oxygen species in hemoglobin oxidation and virus inactivation by 1,9-dimethylmethylene blue phototreatment.
    Hirayama J; Wagner SJ; Abe H; Ikebuchi K; Ikeda H
    Biol Pharm Bull; 2001 Apr; 24(4):418-21. PubMed ID: 11305606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The low photo-inactivation rate of bacteria in human plasma II. Inhibition of methylene blue bleaching in plasma and effective bacterial destruction by the addition of dilute acetic acid to human plasma.
    Chen J; Cesario TC; Li R; Er AO; Rentzepis PM
    Photochem Photobiol Sci; 2015 Oct; 14(10):1880-7. PubMed ID: 26222263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Q beta bacteriophage photoinactivated by methylene blue plus light involves inactivation of its genomic RNA.
    Schneider JE; Pye Q; Floyd RA
    Photochem Photobiol; 1999 Dec; 70(6):902-9. PubMed ID: 10628301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper(II) as an efficient scavenger of singlet molecular oxygen.
    Joshi PC
    Indian J Biochem Biophys; 1998 Aug; 35(4):208-15. PubMed ID: 9854900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms.
    Tang W; Xu H; Kopelman R; Philbert MA
    Photochem Photobiol; 2005; 81(2):242-9. PubMed ID: 15595888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.