These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 9278400)
21. Involvement of a chaperone regulator, Bcl2-associated athanogene-4, in apolipoprotein B mRNA editing. Lau PP; Chan L J Biol Chem; 2003 Dec; 278(52):52988-96. PubMed ID: 14559896 [TBL] [Abstract][Full Text] [Related]
22. Mechanisms targeting apolipoprotein B100 to proteasomal degradation: evidence that degradation is initiated by BiP binding at the N terminus and the formation of a p97 complex at the C terminus. Rutledge AC; Qiu W; Zhang R; Kohen-Avramoglu R; Nemat-Gorgani N; Adeli K Arterioscler Thromb Vasc Biol; 2009 Apr; 29(4):579-85. PubMed ID: 19164805 [TBL] [Abstract][Full Text] [Related]
23. The amino-terminal domain of apolipoprotein B does not undergo retrograde translocation from the endoplasmic reticulum to the cytosol. Proteasomal degradation of nascent apolipoprotein B begins at the carboxyl terminus of the protein, while apolipoprotein B is still in its original translocon. Liang S; Wu X; Fisher EA; Ginsberg HN J Biol Chem; 2000 Oct; 275(41):32003-10. PubMed ID: 10922368 [TBL] [Abstract][Full Text] [Related]
24. Microsomal triacylglycerol transfer protein prevents presecretory degradation of apolipoprotein B-100. A dithiothreitol-sensitive protease is involved. Benoist F; Nicodeme E; Grand-Perret T Eur J Biochem; 1996 Sep; 240(3):713-20. PubMed ID: 8856075 [TBL] [Abstract][Full Text] [Related]
25. Studies on degradative mechanisms mediating post-translational fragmentation of apolipoprotein B and the generation of the 70-kDa fragment. Cavallo D; Rudy D; Mohammadi A; Macri J; Adeli K J Biol Chem; 1999 Aug; 274(33):23135-43. PubMed ID: 10438483 [TBL] [Abstract][Full Text] [Related]
26. Ubiquitin-dependent and -independent proteasomal degradation of apoB associated with endoplasmic reticulum and Golgi apparatus, respectively, in HepG2 cells. Liao W; Chang BH; Mancini M; Chan L J Cell Biochem; 2003 Aug; 89(5):1019-29. PubMed ID: 12874835 [TBL] [Abstract][Full Text] [Related]
27. Proteasome-mediated degradation of apolipoprotein B targets both nascent peptides cotranslationally before translocation and full-length apolipoprotein B after translocation into the endoplasmic reticulum. Liao W; Yeung SC; Chan L J Biol Chem; 1998 Oct; 273(42):27225-30. PubMed ID: 9765244 [TBL] [Abstract][Full Text] [Related]
28. Effects of atorvastatin on the intracellular stability and secretion of apolipoprotein B in HepG2 cells. Mohammadi A; Macri J; Newton R; Romain T; Dulay D; Adeli K Arterioscler Thromb Vasc Biol; 1998 May; 18(5):783-93. PubMed ID: 9598838 [TBL] [Abstract][Full Text] [Related]
29. Bip/GRP78 but not calnexin associates with a precursor of glycosylphosphatidylinositol-anchored protein. Oda K; Wada I; Takami N; Fujiwara T; Misumi Y; Ikehara Y Biochem J; 1996 Jun; 316 ( Pt 2)(Pt 2):623-30. PubMed ID: 8687409 [TBL] [Abstract][Full Text] [Related]
30. Studies on intracellular translocation of apolipoprotein B in a permeabilized HepG2 system. Macri J; Adeli K J Biol Chem; 1997 Mar; 272(11):7328-37. PubMed ID: 9054431 [TBL] [Abstract][Full Text] [Related]
31. Apoprotein B100, an inefficiently translocated secretory protein, is bound to the cytosolic chaperone, heat shock protein 70. Zhou M; Wu X; Huang LS; Ginsberg HN J Biol Chem; 1995 Oct; 270(42):25220-4. PubMed ID: 7559659 [TBL] [Abstract][Full Text] [Related]
32. In HepG2 cells, translocation, not degradation, determines the fate of the de novo synthesized apolipoprotein B. Bonnardel JA; Davis RA J Biol Chem; 1995 Dec; 270(48):28892-6. PubMed ID: 7499417 [TBL] [Abstract][Full Text] [Related]
33. Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. Bush KT; Goldberg AL; Nigam SK J Biol Chem; 1997 Apr; 272(14):9086-92. PubMed ID: 9083035 [TBL] [Abstract][Full Text] [Related]
34. Regulated Co-translational ubiquitination of apolipoprotein B100. A new paradigm for proteasomal degradation of a secretory protein. Zhou M; Fisher EA; Ginsberg HN J Biol Chem; 1998 Sep; 273(38):24649-53. PubMed ID: 9733761 [TBL] [Abstract][Full Text] [Related]
35. Apolipoprotein B, a paradigm for proteins regulated by intracellular degradation, does not undergo intracellular degradation in CaCo2 cells. Liao W; Chan L J Biol Chem; 2000 Feb; 275(6):3950-6. PubMed ID: 10660549 [TBL] [Abstract][Full Text] [Related]
36. Heterologous expression of apolipoprotein B carboxyl-terminal truncates: a model for the study of lipoprotein biogenesis. Patel SB; Grundy SM J Lipid Res; 1995 Oct; 36(10):2090-103. PubMed ID: 8576636 [TBL] [Abstract][Full Text] [Related]
37. Translocational status of ApoB in the presence of an inhibitor of microsomal triglyceride transfer protein. Macri J; Kazemian P; Kulinski A; Rudy D; Aiton A; Thibert RJ; Adeli K Biochem Biophys Res Commun; 2000 Oct; 276(3):1035-47. PubMed ID: 11027587 [TBL] [Abstract][Full Text] [Related]
38. Transmembrane lipid transfer is crucial for providing neutral lipids during very low density lipoprotein assembly in endoplasmic reticulum. Higashi Y; Itabe H; Fukase H; Mori M; Fujimoto Y; Takano T J Biol Chem; 2003 Jun; 278(24):21450-8. PubMed ID: 12670935 [TBL] [Abstract][Full Text] [Related]
39. Green tea catechins decrease apolipoprotein B-100 secretion from HepG2 cells. Yee WL; Wang Q; Agdinaoay T; Dang K; Chang H; Grandinetti A; Franke AA; Theriault A Mol Cell Biochem; 2002 Jan; 229(1-2):85-92. PubMed ID: 11936850 [TBL] [Abstract][Full Text] [Related]
40. Intracellular mechanisms mediating the inhibition of apoB-containing lipoprotein synthesis and secretion in HepG2 cells by avasimibe (CI-1011), a novel acyl-coenzyme A: cholesterol acyltransferase (ACAT) inhibitor. Taghibiglou C; Van Iderstine SC; Kulinski A; Rudy D; Adeli K Biochem Pharmacol; 2002 Feb; 63(3):349-60. PubMed ID: 11853686 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]