BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 9278513)

  • 1. A cyanobacterial phytochrome two-component light sensory system.
    Yeh KC; Wu SH; Murphy JT; Lagarias JC
    Science; 1997 Sep; 277(5331):1505-8. PubMed ID: 9278513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-dependent regulation of cyanobacterial phytochrome expression.
    García-Domínguez M; Muro-Pastor MI; Reyes JC; Florencio FJ
    J Bacteriol; 2000 Jan; 182(1):38-44. PubMed ID: 10613860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signaling kinetics of cyanobacterial phytochrome Cph1, a light regulated histidine kinase.
    Psakis G; Mailliet J; Lang C; Teufel L; Essen LO; Hughes J
    Biochemistry; 2011 Jul; 50(28):6178-88. PubMed ID: 21634374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of a cyanobacterial phytochrome response regulator.
    Im YJ; Rho SH; Park CM; Yang SS; Kang JG; Lee JY; Song PS; Eom SH
    Protein Sci; 2002 Mar; 11(3):614-24. PubMed ID: 11847283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-induced conformational changes of cyanobacterial phytochrome Cph1 probed by limited proteolysis and autophosphorylation.
    Esteban B; Carrascal M; Abian J; Lamparter T
    Biochemistry; 2005 Jan; 44(2):450-61. PubMed ID: 15641769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytochrome Cph1 from the cyanobacterium Synechocystis PCC6803. Purification, assembly, and quaternary structure.
    Lamparter T; Esteban B; Hughes J
    Eur J Biochem; 2001 Sep; 268(17):4720-30. PubMed ID: 11532008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of a Synechocystis sp. PCC 6803 gene with partial similarity to phytochrome genes alters growth under changing light qualities.
    Wilde A; Churin Y; Schubert H; Börner T
    FEBS Lett; 1997 Apr; 406(1-2):89-92. PubMed ID: 9109392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-engineering the two-component systems as light-regulated in
    Ma S; Luo S; Wu LI; Liang Z; Wu JR
    J Biosci; 2017 Dec; 42(4):565-573. PubMed ID: 29229875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteriophytochromes: new tools for understanding phytochrome signal transduction.
    Vierstra RD; Davis SJ
    Semin Cell Dev Biol; 2000 Dec; 11(6):511-21. PubMed ID: 11145881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-induced proton release and proton uptake reactions in the cyanobacterial phytochrome Cph1.
    van Thor JJ; Borucki B; Crielaard W; Otto H; Lamparter T; Hughes J; Hellingwerf KJ; Heyn MP
    Biochemistry; 2001 Sep; 40(38):11460-71. PubMed ID: 11560494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two independent, light-sensing two-component systems in a filamentous cyanobacterium.
    Jorissen HJ; Quest B; Remberg A; Coursin T; Braslavsky SE; Schaffner K; de Marsac NT; Gärtner W
    Eur J Biochem; 2002 Jun; 269(11):2662-71. PubMed ID: 12047374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors.
    Kehoe DM; Grossman AR
    Science; 1996 Sep; 273(5280):1409-12. PubMed ID: 8703080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homologous expression of a bacterial phytochrome. The cyanobacterium Fremyella diplosiphon incorporates biliverdin as a genuine, functional chromophore.
    Quest B; Hübschmann T; Sharda S; Tandeau de Marsac N; Gärtner W
    FEBS J; 2007 Apr; 274(8):2088-98. PubMed ID: 17388813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phytochromes: a biochemical mechanism of signaling in sight?
    Quail PH
    Bioessays; 1997 Jul; 19(7):571-9. PubMed ID: 9230690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of cyanobacterial phytochromes in growth under different light qualities and quantities.
    Fiedler B; Broc D; Schubert H; Rediger A; Börner T; Wilde A
    Photochem Photobiol; 2004 Jun; 79(6):551-5. PubMed ID: 15291308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A second photochromic bacteriophytochrome from Synechocystis sp. PCC 6803: spectral analysis and down-regulation by light.
    Park CM; Kim JI; Yang SS; Kang JG; Kang JH; Shim JY; Chung YH; Park YM; Song PS
    Biochemistry; 2000 Sep; 39(35):10840-7. PubMed ID: 10978170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore.
    Bhoo SH; Davis SJ; Walker J; Karniol B; Vierstra RD
    Nature; 2001 Dec; 414(6865):776-9. PubMed ID: 11742406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry.
    Yeh KC; Lagarias JC
    Proc Natl Acad Sci U S A; 1998 Nov; 95(23):13976-81. PubMed ID: 9811911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimerization and inter-chromophore distance of Cph1 phytochrome from Synechocystis, as monitored by fluorescence homo and hetero energy transfer.
    Otto H; Lamparter T; Borucki B; Hughes J; Heyn MP
    Biochemistry; 2003 May; 42(19):5885-95. PubMed ID: 12741847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa.
    Froehlich AC; Noh B; Vierstra RD; Loros J; Dunlap JC
    Eukaryot Cell; 2005 Dec; 4(12):2140-52. PubMed ID: 16339731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.