These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 9278513)

  • 21. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria.
    Davis SJ; Vener AV; Vierstra RD
    Science; 1999 Dec; 286(5449):2517-20. PubMed ID: 10617469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectroscopy and a high-resolution crystal structure of Tyr263 mutants of cyanobacterial phytochrome Cph1.
    Mailliet J; Psakis G; Feilke K; Sineshchekov V; Essen LO; Hughes J
    J Mol Biol; 2011 Oct; 413(1):115-27. PubMed ID: 21888915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light.
    Wilde A; Fiedler B; Börner T
    Mol Microbiol; 2002 May; 44(4):981-8. PubMed ID: 12010493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Study on the reconstitution in vitro and photochemical activities of phytochrome from the Synechocystis sp. PCC6803].
    Dong YR; Ran Y; Zhao KH; Zhou M
    Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):238-44. PubMed ID: 15969115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the Cph1 holo-phytochrome from Synechocystis sp. PCC 6803.
    Hübschmann T; Börner T; Hartmann E; Lamparter T
    Eur J Biochem; 2001 Apr; 268(7):2055-63. PubMed ID: 11277928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthetic biology: engineering Escherichia coli to see light.
    Levskaya A; Chevalier AA; Tabor JJ; Simpson ZB; Lavery LA; Levy M; Davidson EA; Scouras A; Ellington AD; Marcotte EM; Voigt CA
    Nature; 2005 Nov; 438(7067):441-2. PubMed ID: 16306980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes.
    Jiang Z; Swem LR; Rushing BG; Devanathan S; Tollin G; Bauer CE
    Science; 1999 Jul; 285(5426):406-9. PubMed ID: 10411503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of recombinant phytochrome from the cyanobacterium Synechocystis.
    Lamparter T; Mittmann F; Gärtner W; Börner T; Hartmann E; Hughes J
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11792-7. PubMed ID: 9342316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dwelling in the dark: procedures for the crystallography of phytochromes and other photochromic proteins.
    Mailliet J; Psakis G; Schroeder C; Kaltofen S; Dürrwang U; Hughes J; Essen LO
    Acta Crystallogr D Biol Crystallogr; 2009 Nov; 65(Pt 11):1232-5. PubMed ID: 19923720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystallization and preliminary X-ray crystallographic studies of response regulator for cyanobacterial phytochrome, Rcp1.
    Im YJ; Park CM; Kim JI; Yang SS; Kang JG; Rho SH; Kim JI; Song WK; Song PS; Eom SH
    Acta Crystallogr D Biol Crystallogr; 2000 Nov; 56(Pt 11):1446-8. PubMed ID: 11053847
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The chromophore structure of the cyanobacterial phytochrome Cph1 as predicted by time-dependent density functional theory.
    Matute RA; Contreras R; Pérez-Hernández G; González L
    J Phys Chem B; 2008 Dec; 112(51):16253-6. PubMed ID: 19368024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel receptor kinase involved in jasmonate-mediated wound and phytochrome signaling in maize coleoptiles.
    He G; Tarui Y; Iino M
    Plant Cell Physiol; 2005 Jun; 46(6):870-83. PubMed ID: 15829513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-component signal transduction pathways in Arabidopsis.
    Hwang I; Chen HC; Sheen J
    Plant Physiol; 2002 Jun; 129(2):500-15. PubMed ID: 12068096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein phosphorylation in cyanobacteria.
    Mann NH
    Microbiology (Reading); 1994 Dec; 140 ( Pt 12)():3207-15. PubMed ID: 7881542
    [No Abstract]   [Full Text] [Related]  

  • 35. HstK, a cyanobacterial protein with both a serine/threonine kinase domain and a histidine kinase domain: implication for the mechanism of signal transduction.
    Phalip V; Li JH; Zhang CC
    Biochem J; 2001 Dec; 360(Pt 3):639-44. PubMed ID: 11736654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytochromes as light-modulated protein kinases.
    Fankhauser C
    Semin Cell Dev Biol; 2000 Dec; 11(6):467-73. PubMed ID: 11145876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a two-component signal transduction system involved in the induction of alkaline phosphatase under phosphate-limiting conditions in Synechocystis sp. PCC 6803.
    Hirani TA; Suzuki I; Murata N; Hayashi H; Eaton-Rye JJ
    Plant Mol Biol; 2001 Jan; 45(2):133-44. PubMed ID: 11289505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compilation of all genes encoding bacterial two-component signal transducers in the genome of the cyanobacterium, Synechocystis sp. strain PCC 6803.
    Mizuno T; Kaneko T; Tabata S
    DNA Res; 1996 Dec; 3(6):407-14. PubMed ID: 9097043
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The pair of bacteriophytochromes from Agrobacterium tumefaciens are histidine kinases with opposing photobiological properties.
    Karniol B; Vierstra RD
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2807-12. PubMed ID: 12604773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-component systems in Prochlorococcus MED4: genomic analysis and differential expression under stress.
    Mary I; Vaulot D
    FEMS Microbiol Lett; 2003 Sep; 226(1):135-44. PubMed ID: 13129619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.