These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9278984)

  • 1. Toxic properties of Beauveria pigments on erythrocyte membranes.
    Jeffs LB; Khachatourians GG
    Toxicon; 1997 Aug; 35(8):1351-6. PubMed ID: 9278984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ouabain on ATPase activities in human erythrocyte membranes.
    Li JC; Hinds TR; Vincenzi FF
    Proc West Pharmacol Soc; 1990; 33():143-8. PubMed ID: 2177192
    [No Abstract]   [Full Text] [Related]  

  • 3. [The evaluation of the role of endogenous Ca-dependent regulators and protein kinases in activating and inhibiting ion-transport ATPases].
    Petruniaka VV; Paniushkina EA
    Tsitologiia; 1991; 33(11):49-54. PubMed ID: 1668051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. R 24571: a new powerful inhibitor of red blood cell Ca++-transport ATPase and of calmodulin-regulated functions.
    Gietzen K; Wüthrich A; Bader H
    Biochem Biophys Res Commun; 1981 Jul; 101(2):418-25. PubMed ID: 6272758
    [No Abstract]   [Full Text] [Related]  

  • 5. Activity of Na-K-ATPase and Ca-Mg-ATPase in red blood cell membranes of lead-depleted rats.
    Eder K; Reichlmayr-Lais AM; Kirchgessner M
    J Trace Elem Electrolytes Health Dis; 1990 Mar; 4(1):21-4. PubMed ID: 1967007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of 4-OH-2,3-trans-nonenal on human erythrocyte plasma membrane Ca2+ pump and passive Ca2+ permeability.
    Raess BU; Keenan CE; McConnell EJ
    Biochem Biophys Res Commun; 1997 Jun; 235(3):451-4. PubMed ID: 9207174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A comparative study of the intracellular regulation of transport ATPase activity in non-nucleated erythrocytes].
    Matskevich IuA; Kazennov AM; Shalabodov AD
    Zh Evol Biokhim Fiziol; 1994; 30(5):690-7. PubMed ID: 8721313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The effect of hemolysate and calcium ions on transport ATPase activity in guinea pig erythrocytes].
    Matskevich IuA; Kazennov AM
    Zh Evol Biokhim Fiziol; 1994; 30(6):738-45. PubMed ID: 8721317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A protein inhibitor of erythrocyte membrane (Ca2+ + Mg2+)-ATPase.
    Lee KS; Au KS
    Biochim Biophys Acta; 1983 Jan; 742(1):54-62. PubMed ID: 6130792
    [No Abstract]   [Full Text] [Related]  

  • 10. Red cell membrane (Na+ +K+)-ATPase in diabetes mellitus.
    Suhail M; Rizvi SI
    Biochem Biophys Res Commun; 1987 Jul; 146(1):179-86. PubMed ID: 3038103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adriamycin-Fe(3+)-induced inactivation of enzymes in erythrocyte membranes during lipid peroxidation.
    Miura T; Muraoka S; Ogiso T
    Res Commun Mol Pathol Pharmacol; 1995 Feb; 87(2):133-43. PubMed ID: 7749651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of Ca2+-pump ATPase and the Na+/K+-pump ATPase by iron-generated free radicals. Protection by 6,7-dimethyl-2,4-DI-1- pyrrolidinyl-7H-pyrrolo[2,3-d] pyrimidine sulfate (U-89843D), a potent, novel, antioxidant/free radical scavenger.
    Rohn TT; Hinds TR; Vincenzi FF
    Biochem Pharmacol; 1996 Feb; 51(4):471-6. PubMed ID: 8619892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volatile anesthetics selectively inhibit the Ca(2+)-transporting ATPase in neuronal and erythrocyte plasma membranes.
    Fomitcheva I; Kosk-Kosicka D
    Anesthesiology; 1996 May; 84(5):1189-95. PubMed ID: 8624013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of erythrocyte ghost ATPase by polyene antibiotics.
    Capuozzo E; Jullien S; Salerno C; Crifò C
    Biochem Int; 1990; 20(6):1135-9. PubMed ID: 2164397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for the preparation of human erythrocyte membrane with low basal calcium ATPase, responsive to stimulation.
    Thaker JH
    Anal Biochem; 1985 Jan; 144(1):94-7. PubMed ID: 2984958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The activity of transport ATPases and the characteristics of the protein-lipid composition of the membranes of anuclear erythrocytes in a number of mammals].
    Matskevich IuA; Kazennov AM; Maslova MN
    Zh Evol Biokhim Fiziol; 1994; 30(4):497-504. PubMed ID: 7863741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion transport ATPases as targets for free radical damage. Protection by an aminosteroid of the Ca2+ pump ATPase and Na+/K+ pump ATPase of human red blood cell membranes.
    Rohn TT; Hinds TR; Vincenzi FF
    Biochem Pharmacol; 1993 Aug; 46(3):525-34. PubMed ID: 8394084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of furyl-dihydropyridines I on lipid peroxides of ischemic myocardium and ATPases activity of erythrocyte membranes in rats].
    Liu DQ; Pang ZQ; Zhao DH; Sheng BH
    Zhongguo Yao Li Xue Bao; 1991 May; 12(3):253-6. PubMed ID: 1664169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of erythrocyte membrane cation transport adenosine triphosphatases in pregnancy-induced hypertension and of in vivo effects of diuretic treatment.
    Kaplay SS; Prema K
    Clin Chim Acta; 1981 Feb; 110(1):27-33. PubMed ID: 6111403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of human erythrocyte Ca2+-ATPase by Zn2+.
    Hogstrand C; Verbost PM; Wendelaar Bonga SE
    Toxicology; 1999 Apr; 133(2-3):139-45. PubMed ID: 10378480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.