BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 9279807)

  • 21. Kinetic structure of large-conductance Ca2+-activated K+ channels suggests that the gating includes transitions through intermediate or secondary states. A mechanism for flickers.
    Rothberg BS; Magleby KL
    J Gen Physiol; 1998 Jun; 111(6):751-80. PubMed ID: 9607935
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The BK channel accessory beta1 subunit determines alcohol-induced cerebrovascular constriction.
    Bukiya AN; Liu J; Dopico AM
    FEBS Lett; 2009 Sep; 583(17):2779-84. PubMed ID: 19616547
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intermediate conductances during deactivation of heteromultimeric Shaker potassium channels.
    Zheng J; Sigworth FJ
    J Gen Physiol; 1998 Oct; 112(4):457-74. PubMed ID: 9758864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenotypic alteration of a human BK (hSlo) channel by hSlobeta subunit coexpression: changes in blocker sensitivity, activation/relaxation and inactivation kinetics, and protein kinase A modulation.
    Dworetzky SI; Boissard CG; Lum-Ragan JT; McKay MC; Post-Munson DJ; Trojnacki JT; Chang CP; Gribkoff VK
    J Neurosci; 1996 Aug; 16(15):4543-50. PubMed ID: 8764643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discovery of agonist-antagonist pairs for the modulation of Ca
    Slayden AV; Dyer CL; Ma D; Li W; Bukiya AN; Parrill AL; Dopico AM
    Bioorg Med Chem; 2022 Aug; 68():116876. PubMed ID: 35716586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure, Gating and Basic Functions of the Ca2+-activated K Channel of Intermediate Conductance.
    Sforna L; Megaro A; Pessia M; Franciolini F; Catacuzzeno L
    Curr Neuropharmacol; 2018; 16(5):608-617. PubMed ID: 28875832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calcium- and voltage-gated potassium (BK) channel activators in the 5β-cholanic acid-3α-ol analogue series with modifications in the lateral chain.
    Bukiya AN; Patil SA; Li W; Miller DD; Dopico AM
    ChemMedChem; 2012 Oct; 7(10):1784-92. PubMed ID: 22945504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels.
    Kaczmarek LK; Aldrich RW; Chandy KG; Grissmer S; Wei AD; Wulff H
    Pharmacol Rev; 2017 Jan; 69(1):1-11. PubMed ID: 28267675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lack of activity of the mitochondrial large-conductance calcium-regulated potassium channels in senescent vascular smooth muscle cells.
    Głuchowska A; Kalenik B; Kulawiak B; Wrzosek A; Szewczyk A; Bednarczyk P; Mosieniak G
    Mech Ageing Dev; 2023 Oct; 215():111871. PubMed ID: 37689317
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The beta1 subunit of the Ca2+-sensitive K+ channel protects against hypertension.
    Nelson MT; Bonev AD
    J Clin Invest; 2004 Apr; 113(7):955-7. PubMed ID: 15057299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Voltage-gated calcium channel subunits from platyhelminths: potential role in praziquantel action.
    Jeziorski MC; Greenberg RM
    Int J Parasitol; 2006 May; 36(6):625-32. PubMed ID: 16545816
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological Roles and Therapeutic Potential of Ca
    Kshatri AS; Gonzalez-Hernandez A; Giraldez T
    Front Mol Neurosci; 2018; 11():258. PubMed ID: 30104956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrophysiology of Ctenophore Smooth Muscle.
    Meech RW; Bilbaut Deceased A; Hernandez-Nicaise ML
    Methods Mol Biol; 2024; 2757():315-359. PubMed ID: 38668975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. K
    Rahman MA; Orfali R; Dave N; Lam E; Naguib N; Nam YW; Zhang M
    J Neurosci Res; 2023 Nov; 101(11):1699-1710. PubMed ID: 37466411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of potassium channels by transmembrane auxiliary subunits via voltage-sensing domains.
    Nakajo K; Kasuya G
    Physiol Rep; 2024 Mar; 12(6):e15980. PubMed ID: 38503563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. BK channels of five different subunit combinations underlie the de novo KCNMA1 G375R channelopathy.
    Geng Y; Li P; Butler A; Wang B; Salkoff L; Magleby KL
    J Gen Physiol; 2023 May; 155(5):. PubMed ID: 36995317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-staining of K
    Brömmel K; Maskri S; Bulk E; Pethő Z; Rieke M; Budde T; Koch O; Schwab A; Wünsch B
    ChemMedChem; 2020 Dec; 15(24):2462-2469. PubMed ID: 33043595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. K
    Zahra A; Liu R; Han W; Meng H; Wang Q; Wang Y; Campbell SL; Wu J
    Curr Neuropharmacol; 2023; 21(7):1504-1518. PubMed ID: 36503451
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Knockdown of the small conductance Ca(2+) -activated K(+) channels is potently cytotoxic in breast cancer cell lines.
    Abdulkareem ZA; Gee JM; Cox CD; Wann KT
    Br J Pharmacol; 2016 Jan; 173(1):177-90. PubMed ID: 26454020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Challenges in the Therapeutic Targeting of KCa Channels: From Basic Physiology to Clinical Applications.
    Van NTH; Kim WK; Nam JH
    Int J Mol Sci; 2024 Mar; 25(5):. PubMed ID: 38474212
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.