These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 9280066)
1. Evidence for ligand-dependent intramolecular folding of the AF-2 domain in vitamin D receptor-activated transcription and coactivator interaction. Masuyama H; Brownfield CM; St-Arnaud R; MacDonald PN Mol Endocrinol; 1997 Sep; 11(10):1507-17. PubMed ID: 9280066 [TBL] [Abstract][Full Text] [Related]
2. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138 [TBL] [Abstract][Full Text] [Related]
3. Mapping the domains of the interaction of the vitamin D receptor and steroid receptor coactivator-1. Gill RK; Atkins LM; Hollis BW; Bell NH Mol Endocrinol; 1998 Jan; 12(1):57-65. PubMed ID: 9440810 [TBL] [Abstract][Full Text] [Related]
4. The autonomous transactivation domain in helix H3 of the vitamin D receptor is required for transactivation and coactivator interaction. Kraichely DM; Collins JJ; DeLisle RK; MacDonald PN J Biol Chem; 1999 May; 274(20):14352-8. PubMed ID: 10318858 [TBL] [Abstract][Full Text] [Related]
5. Regulation of ligand-induced heterodimerization and coactivator interaction by the activation function-2 domain of the vitamin D receptor. Liu YY; Nguyen C; Peleg S Mol Endocrinol; 2000 Nov; 14(11):1776-87. PubMed ID: 11075811 [TBL] [Abstract][Full Text] [Related]
6. Proteasome-mediated degradation of the vitamin D receptor (VDR) and a putative role for SUG1 interaction with the AF-2 domain of VDR. Masuyama H; MacDonald PN J Cell Biochem; 1998 Dec; 71(3):429-40. PubMed ID: 9831079 [TBL] [Abstract][Full Text] [Related]
7. Lysine 246 of the vitamin D receptor is crucial for ligand-dependent interaction with coactivators and transcriptional activity. Jiménez-Lara AM; Aranda A J Biol Chem; 1999 May; 274(19):13503-10. PubMed ID: 10224118 [TBL] [Abstract][Full Text] [Related]
8. Analysis of the functional role of steroid receptor coactivator-1 in ligand-induced transactivation by thyroid hormone receptor. Jeyakumar M; Tanen MR; Bagchi MK Mol Endocrinol; 1997 Jun; 11(6):755-67. PubMed ID: 9171239 [TBL] [Abstract][Full Text] [Related]
9. Synergistic activation of the prolactin promoter by vitamin D receptor and GHF-1: role of the coactivators, CREB-binding protein and steroid hormone receptor coactivator-1 (SRC-1). Castillo AI; Jimenez-Lara AM; Tolon RM; Aranda A Mol Endocrinol; 1999 Jul; 13(7):1141-54. PubMed ID: 10406465 [TBL] [Abstract][Full Text] [Related]
10. The unique tryptophan residue of the vitamin D receptor is critical for ligand binding and transcriptional activation. Solomon C; Macoritto M; Gao XL; White JH; Kremer R J Bone Miner Res; 2001 Jan; 16(1):39-45. PubMed ID: 11149488 [TBL] [Abstract][Full Text] [Related]
12. Retinoid X receptor is a nonsilent major contributor to vitamin D receptor-mediated transcriptional activation. Bettoun DJ; Burris TP; Houck KA; Buck DW; Stayrook KR; Khalifa B; Lu J; Chin WW; Nagpal S Mol Endocrinol; 2003 Nov; 17(11):2320-8. PubMed ID: 12893883 [TBL] [Abstract][Full Text] [Related]
13. Vitamin D receptors from patients with resistance to 1,25-dihydroxyvitamin D3: point mutations confer reduced transactivation in response to ligand and impaired interaction with the retinoid X receptor heterodimeric partner. Whitfield GK; Selznick SH; Haussler CA; Hsieh JC; Galligan MA; Jurutka PW; Thompson PD; Lee SM; Zerwekh JE; Haussler MR Mol Endocrinol; 1996 Dec; 10(12):1617-31. PubMed ID: 8961271 [TBL] [Abstract][Full Text] [Related]
14. Thyroid hormone receptor does not heterodimerize with the vitamin D receptor but represses vitamin D receptor-mediated transactivation. Raval-Pandya M; Freedman LP; Li H; Christakos S Mol Endocrinol; 1998 Sep; 12(9):1367-79. PubMed ID: 9731705 [TBL] [Abstract][Full Text] [Related]
15. Hereditary 1,25-dihydroxyvitamin D resistant rickets due to a mutation causing multiple defects in vitamin D receptor function. Malloy PJ; Xu R; Peng L; Peleg S; Al-Ashwal A; Feldman D Endocrinology; 2004 Nov; 145(11):5106-14. PubMed ID: 15308610 [TBL] [Abstract][Full Text] [Related]
17. The N-terminal domain of transcription factor IIB is required for direct interaction with the vitamin D receptor and participates in vitamin D-mediated transcription. Masuyama H; Jefcoat SC; MacDonald PN Mol Endocrinol; 1997 Feb; 11(2):218-28. PubMed ID: 9013769 [TBL] [Abstract][Full Text] [Related]
18. Vitamin D represses retinoic acid-dependent transactivation of the retinoic acid receptor-beta2 promoter: the AF-2 domain of the vitamin D receptor is required for transrepression. Jiménez-Lara AM; Aranda A Endocrinology; 1999 Jun; 140(6):2898-907. PubMed ID: 10342883 [TBL] [Abstract][Full Text] [Related]
19. The interaction of the vitamin D receptor with nuclear receptor corepressors and coactivators. Tagami T; Lutz WH; Kumar R; Jameson JL Biochem Biophys Res Commun; 1998 Dec; 253(2):358-63. PubMed ID: 9878542 [TBL] [Abstract][Full Text] [Related]
20. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Hong H; Kohli K; Garabedian MJ; Stallcup MR Mol Cell Biol; 1997 May; 17(5):2735-44. PubMed ID: 9111344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]