BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9280316)

  • 1. Design of sensitive fluorogenic substrates for human cathepsin D.
    Gulnik SV; Suvorov LI; Majer P; Collins J; Kane BP; Johnson DG; Erickson JW
    FEBS Lett; 1997 Aug; 413(2):379-84. PubMed ID: 9280316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D.
    Yasuda Y; Kageyama T; Akamine A; Shibata M; Kominami E; Uchiyama Y; Yamamoto K
    J Biochem; 1999 Jun; 125(6):1137-43. PubMed ID: 10348917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New intramolecularly quenched fluorogenic peptide substrates for the study of the kinetic specificity of papain.
    García-Echeverría C; Rich DH
    FEBS Lett; 1992 Feb; 297(1-2):100-2. PubMed ID: 1551413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of P2' substituents on kinetic constants for hydrolysis by cysteine proteinases.
    García-Echeverría C; Rich DH
    Biochem Biophys Res Commun; 1992 Sep; 187(2):615-9. PubMed ID: 1530620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general method for the preparation of internally quenched fluorogenic protease substrates using solid-phase peptide synthesis.
    Maggiora LL; Smith CW; Zhang ZY
    J Med Chem; 1992 Oct; 35(21):3727-30. PubMed ID: 1433187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorogenic peptide substrates for carboxydipeptidase activity of cathepsin B.
    Stachowiak K; Tokmina M; Karpińska A; Sosnowska R; Wiczk W
    Acta Biochim Pol; 2004; 51(1):81-92. PubMed ID: 15094828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the active site specificity of the aspartic proteinases based on a systematic series of peptide substrates.
    Dunn BM; Scarborough PE; Lowther WT; Rao-Naik C
    Adv Exp Med Biol; 1995; 362():1-9. PubMed ID: 8540305
    [No Abstract]   [Full Text] [Related]  

  • 8. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling.
    Scarborough PE; Guruprasad K; Topham C; Richo GR; Conner GE; Blundell TL; Dunn BM
    Protein Sci; 1993 Feb; 2(2):264-76. PubMed ID: 8443603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer.
    Matayoshi ED; Wang GT; Krafft GA; Erickson J
    Science; 1990 Feb; 247(4945):954-8. PubMed ID: 2106161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate specificity of human cathepsin D using internally quenched fluorescent peptides derived from reactive site loop of kallistatin.
    Pimenta DC; Oliveira A; Juliano MA; Juliano L
    Biochim Biophys Acta; 2001 Jan; 1544(1-2):113-22. PubMed ID: 11341921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging.
    Tung CH; Bredow S; Mahmood U; Weissleder R
    Bioconjug Chem; 1999; 10(5):892-6. PubMed ID: 10502358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate.
    Kuo CJ; Chi YH; Hsu JT; Liang PH
    Biochem Biophys Res Commun; 2004 Jun; 318(4):862-7. PubMed ID: 15147951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorogenic peptide substrates containing benzoxazol-5-yl-alanine derivatives for kinetic assay of cysteine proteases.
    Szabelski M; Rogiewicz M; Wiczk W
    Anal Biochem; 2005 Jul; 342(1):20-7. PubMed ID: 15958176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and synthesis of sensitive fluorogenic substrates specific for Lys-gingipain.
    Abe N; Baba A; Kadowaki T; Okamoto K; Okazaki S; Asao T; Yamamoto K
    J Biochem; 2000 Nov; 128(5):877-81. PubMed ID: 11056401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redesign of the substrate specificity of human cathepsin D: the dominant role of position 287 in the S2 subsite.
    Scarborough PE; Dunn BM
    Protein Eng; 1994 Apr; 7(4):495-502. PubMed ID: 7913221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly sensitive intramolecularly quenched fluorogenic substrates for renin based on the combination of L-2-amino-3-(7-methoxy-4-coumaryl)propionic acid with 2,4-dinitrophenyl groups at various positions.
    Paschalidou K; Neumann U; Gerhartz B; Tzougraki C
    Biochem J; 2004 Sep; 382(Pt 3):1031-8. PubMed ID: 15233625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phosphotyrosine-containing quenched fluorogenic peptide as a novel substrate for protein tyrosine phosphatases.
    Nishikata M; Suzuki K; Yoshimura Y; Deyama Y; Matsumoto A
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):385-91. PubMed ID: 10510304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cleavage at the amino and carboxyl termini of Alzheimer's amyloid-beta by cathepsin D.
    Ladror US; Snyder SW; Wang GT; Holzman TF; Krafft GA
    J Biol Chem; 1994 Jul; 269(28):18422-8. PubMed ID: 8034590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New continuous and specific fluorometric assays for Pseudomonas aeruginosa elastase and LasA protease.
    Elston C; Wallach J; Saulnier J
    Anal Biochem; 2007 Sep; 368(1):87-94. PubMed ID: 17553454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of a fluorogenic interleukin-1 beta converting enzyme substrate based on resonance energy transfer.
    Pennington MW; Thornberry NA
    Pept Res; 1994; 7(2):72-6. PubMed ID: 8012123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.