These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 9280360)

  • 1. Transport of L-valine by the chicken caecum.
    Planas JM; González E; Ferrer R; Moretó M
    Br Poult Sci; 1997 Jul; 38(3):307-10. PubMed ID: 9280360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal amino acid uptake by the rat small intestine. Energetics of membrane transport systems for amino acids in the developing jejunum.
    Murphy S; Daniels VG
    J Dev Physiol; 1979 Apr; 1(2):127-35. PubMed ID: 553940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells.
    Hopfer U; Sigrist-Nelson K; Ammann E; Murer H
    J Cell Physiol; 1976 Dec; 89(4):805-10. PubMed ID: 137908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleosides are efficiently absorbed by Na(+)-dependent transport across the intestinal brush border membrane in veal calves.
    Theisinger A; Grenacher B; Rech KS; Scharrer E
    J Dairy Sci; 2002 Sep; 85(9):2308-14. PubMed ID: 12362464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of deoxynivalenol on the D-glucose transport across the isolated epithelium of different intestinal segments of laying hens.
    Awad WA; Razzazi-Fazeli E; Böhm J; Zentek J
    J Anim Physiol Anim Nutr (Berl); 2007 Jun; 91(5-6):175-80. PubMed ID: 17516937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postnatal amino acid uptake by the rat small intestine. Changes in membrane transport systems for amino acids associated with maturation of jejunal morphology.
    Murphy S; Daniels VG
    J Dev Physiol; 1979 Apr; 1(2):111-26. PubMed ID: 121999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological study of the caecal epithelium of the chicken (Gallus gallus domesticus L.).
    Ferrer R; Planas JM; Durfort M; Moretó M
    Br Poult Sci; 1991 Sep; 32(4):679-91. PubMed ID: 1933442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HgCl2 inhibition of Na-independent L-proline transport in chicken proximal cecum.
    Amat C; Puchal A; Planas JM; Moretó M
    Rev Esp Fisiol; 1992 Sep; 48(3):171-6. PubMed ID: 1301632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of intestinal L-carnitine transport.
    Durán JM; Peral MJ; Calonge ML; Ilundáin AA
    J Membr Biol; 2002 Jan; 185(1):65-74. PubMed ID: 11891565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic dependence of glycylsarcosine uptake by isolated chicken enterocytes.
    Calonge ML; Ilundain A; Bolufer J
    J Cell Physiol; 1989 Mar; 138(3):579-85. PubMed ID: 2538486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of the chicken proximal cecum hexose transport system.
    Ferrer R; Planas JM; Moretó M
    Pflugers Arch; 1986 Jul; 407(1):100-4. PubMed ID: 3737374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium transport in the hen lower intestine. induction of sodium sites in the brush border by a low sodium diet.
    Bindslev N
    J Physiol; 1979 Mar; 288():449-66. PubMed ID: 469729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Response of glycine and glycyl-L-valine uptake parametrs across in vitro everted sacs of chicken gut to variations in oxygenation rate and fasting].
    Basova NA; Markov IuG; Berzin NI
    Ross Fiziol Zh Im I M Sechenova; 2007 Dec; 93(12):1423-34. PubMed ID: 18318182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hexose transport across the apical and basolateral membrane of enterocytes from different regions of the chicken intestine.
    Ferrer R; Gil M; Moretó M; Oliveras M; Planas JM
    Pflugers Arch; 1994 Jan; 426(1-2):83-8. PubMed ID: 8146029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PEPT1-mediated uptake of dipeptides enhances the intestinal absorption of amino acids via transport system b(0,+).
    Wenzel U; Meissner B; Döring F; Daniel H
    J Cell Physiol; 2001 Feb; 186(2):251-9. PubMed ID: 11169462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serotonin uptake and its modulation in rat jejunal enterocyte preparation.
    Takayanagi S; Hanai H; Kumagai J; Kaneko E
    J Pharmacol Exp Ther; 1995 Mar; 272(3):1151-9. PubMed ID: 7891327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body and intestinal growth of broiler chicks on a commercial starter diet. 3. Development and characteristics of tryptophan transport.
    Iji PA; Saki A; Tivey DR
    Br Poult Sci; 2001 Sep; 42(4):523-9. PubMed ID: 11572629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hexose transport by chicken cecum during development.
    Planas JM; Villá MC; Ferrer R; Moretó M
    Pflugers Arch; 1986 Aug; 407(2):216-20. PubMed ID: 3748783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-mannose transport and metabolism in isolated enterocytes.
    Durán JM; Cano M; Peral MJ; Ilundáin AA
    Glycobiology; 2004 Jun; 14(6):495-500. PubMed ID: 15033941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Various routes of L-tryptophan transport in the small intestine of the chick].
    Basova NA; Kushak RI
    Fiziol Zh SSSR Im I M Sechenova; 1986 Jun; 72(6):810-7. PubMed ID: 3089847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.