These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 9281453)

  • 1. Cytoplasmic redox potential affects energetics and contractile reactivity of vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    J Mol Cell Cardiol; 1997 Aug; 29(8):2225-32. PubMed ID: 9281453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    J Mol Cell Cardiol; 1998 Aug; 30(8):1571-9. PubMed ID: 9737943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADH/NAD redox state of cytoplasmic glycolytic compartments in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H2872-8. PubMed ID: 11087243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of lactic acid and energy metabolism in vascular smooth muscle: effect of dichloroacetate.
    Barron JT; Parrillo JE
    Am J Physiol; 1995 Feb; 268(2 Pt 2):H713-9. PubMed ID: 7864198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of angiotensin II on energetics, glucose metabolism and cytosolic NADH/NAD and NADPH/NADP redox in vascular smooth muscle.
    Barron JT; Sasse MF; Nair A
    Mol Cell Biochem; 2004 Jul; 262(1-2):91-9. PubMed ID: 15532713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insulin-stimulated NADH/NAD+ redox state increases NAD(P)H oxidase activity in cultured rat vascular smooth muscle cells.
    Yang M; Kahn AM
    Am J Hypertens; 2006 Jun; 19(6):587-92. PubMed ID: 16733230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Ansell R; Rigoulet M; Adler L; Gustafsson L
    Yeast; 1998 Mar; 14(4):347-57. PubMed ID: 9559543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate-dependent alteration in O2 consumption and energy metabolism in vascular smooth muscle.
    Barron JT; Kopp SJ; Tow J; Parrillo JE
    Am J Physiol; 1996 Jun; 270(6 Pt 2):H1869-77. PubMed ID: 8764234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli.
    Zhu J; Shimizu K
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):367-75. PubMed ID: 14673546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of panic-like symptoms by lactate is associated with increased neural firing and oxidation of brain redox in the rat hippocampus.
    Bergold PJ; Pinkhasova V; Syed M; Kao HY; Jozwicka A; Zhao N; Coplan JD; Dow-Edwards D; Fenton AA
    Neurosci Lett; 2009 Apr; 453(3):219-24. PubMed ID: 19429039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of cellular energy metabolism on contractions of porcine carotid artery smooth muscle.
    Dillon PF
    J Vasc Res; 2000; 37(6):532-9. PubMed ID: 11146407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct effect of contraction and ion transport on NADH fluorescence and lactate production in uterine smooth muscle.
    Rubányi G; Tóth A; Kovách AG
    Acta Physiol Acad Sci Hung; 1982; 59(1):45-58. PubMed ID: 7180510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevated lactate suppresses neuronal firing in vivo and inhibits glucose metabolism in hippocampal slice cultures.
    Gilbert E; Tang JM; Ludvig N; Bergold PJ
    Brain Res; 2006 Oct; 1117(1):213-23. PubMed ID: 16996036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of metabolic flux distributions for MDCK cell growth in glutamine- and pyruvate-containing media.
    Sidorenko Y; Wahl A; Dauner M; Genzel Y; Reichl U
    Biotechnol Prog; 2008; 24(2):311-20. PubMed ID: 18215054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurogenic vasoreactive response of human internal thoracic artery smooth muscle.
    Canver CC; Cooler SD; Saban R
    J Surg Res; 1997 Sep; 72(1):49-52. PubMed ID: 9344713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation of NADH/NAD to contraction in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    Mol Cell Biochem; 1999 Apr; 194(1-2):283-90. PubMed ID: 10391151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate depresses sarcolemmal permeability of Ca2+ in intact arterial smooth muscle.
    Barron JT; Nair A
    Life Sci; 2003 Dec; 74(5):651-62. PubMed ID: 14623035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential regulation of glucose and glycogen metabolism in vascular smooth muscle by exogenous substrates.
    Hardin CD; Roberts TM
    J Mol Cell Cardiol; 1997 Apr; 29(4):1207-16. PubMed ID: 9160872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gluconeogenesis and phosphate reabsorption in isolated lactate- or pyruvate-perfused rat kidneys.
    Baines AD; Ross BD
    Miner Electrolyte Metab; 1984; 10(5):286-91. PubMed ID: 6493157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.