These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 9281457)

  • 21. Relationship between the expression of cyclins/cyclin-dependent kinases and sex-steroid receptors/Ki67 in normal human endometrial glands and stroma during the menstrual cycle.
    Shiozawa T; Li SF; Nakayama K; Nikaido T; Fujii S
    Mol Hum Reprod; 1996 Oct; 2(10):745-52. PubMed ID: 9239692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of second messenger- and cyclin-dependent protein kinases during postnatal development of rat heart.
    Kim SO; Katz S; Pelech SL
    J Cell Biochem; 1998 Jun; 69(4):506-21. PubMed ID: 9620176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of cyclin D activity in left ventricle hypertrophy in vivo and in vitro.
    Busk PK; Bartkova J; Strøm CC; Wulf-Andersen L; Hinrichsen R; Christoffersen TE; Latella L; Bartek J; Haunsø S; Sheikh SP
    Cardiovasc Res; 2002 Oct; 56(1):64-75. PubMed ID: 12237167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Altered miRNA expression in aniline-mediated cell cycle progression in rat spleen.
    Wang G; Wang J; Khan MF
    Toxicol Mech Methods; 2017 Sep; 27(7):511-517. PubMed ID: 28463034
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reexpression of the neural cell adhesion molecule (NCAM) on cardiac myocytes in aging rat heart.
    Linnemann D
    Acta Histochem; 1994 Dec; 96(4):349-54. PubMed ID: 7717040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cardiac myocyte terminal differentiation. Potential for cardiac regeneration.
    Tam SK; Gu W; Mahdavi V; Nadal-Ginard B
    Ann N Y Acad Sci; 1995 Mar; 752():72-9. PubMed ID: 7755297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Down-regulation of replication factor C-40 (RFC40) causes chromosomal missegregation in neonatal and hypertrophic adult rat cardiac myocytes.
    Ata H; Shrestha D; Oka M; Ochi R; Jong CJ; Gebb S; Benjamin J; Schaffer S; Hobart HH; Downey J; McMurtry I; Gupte R
    PLoS One; 2012; 7(6):e39009. PubMed ID: 22720015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Western array analysis of cell cycle protein changes during the hyperplastic to hypertrophic transition in heart development.
    Evans HJ; Goodwin RL
    Mol Cell Biochem; 2007 Sep; 303(1-2):189-99. PubMed ID: 17457520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart.
    Jonker SS; Zhang L; Louey S; Giraud GD; Thornburg KL; Faber JJ
    J Appl Physiol (1985); 2007 Mar; 102(3):1130-42. PubMed ID: 17122375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell cycle regulatory molecules (cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors) and the cardiovascular system; potential targets for therapy?
    Li JM; Brooks G
    Eur Heart J; 1999 Mar; 20(6):406-20. PubMed ID: 10213344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The cardiac cell cycle, pocket proteins, and p300.
    Kirshenbaum LA; Schneider MD
    Trends Cardiovasc Med; 1995; 5(6):230-5. PubMed ID: 21232265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of a novel cardiac isoform of the cell cycle-related kinase that is regulated during heart failure.
    Qiu H; Dai H; Jain K; Shah R; Hong C; Pain J; Tian B; Vatner DE; Vatner SF; Depre C
    J Biol Chem; 2008 Aug; 283(32):22157-65. PubMed ID: 18508765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Telomere shortening is an in vivo marker of myocyte replication and aging.
    Kajstura J; Pertoldi B; Leri A; Beltrami CA; Deptala A; Darzynkiewicz Z; Anversa P
    Am J Pathol; 2000 Mar; 156(3):813-9. PubMed ID: 10702397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of serum concentration on hypothermic preservation of cardiac myocytes isolated from neonatal rat ventricle.
    Orita H; Fukasawa M; Hirooka S; Uchino H; Fukui K; Kohi M; Washio M; Suzuki T
    Jpn Heart J; 1994 Mar; 35(2):213-23. PubMed ID: 8022065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue-Specific Cell Cycle Indicator Reveals Unexpected Findings for Cardiac Myocyte Proliferation.
    Hirai M; Chen J; Evans SM
    Circ Res; 2016 Jan; 118(1):20-8. PubMed ID: 26472817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removing the brakes to cardiomyocyte cell cycle.
    Di Stefano V; Martelli F
    Cell Cycle; 2011 Apr; 10(8):1176-7. PubMed ID: 21389768
    [No Abstract]   [Full Text] [Related]  

  • 37. Changes in Cardiomyocyte Cell Cycle and Hypertrophic Growth During Fetal to Adult in Mammals.
    Bishop SP; Zhou Y; Nakada Y; Zhang J
    J Am Heart Assoc; 2021 Jan; 10(2):e017839. PubMed ID: 33399005
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose-regulated protein 78 (GRP78) is elevated in embryonic mouse heart and induced following hypoglycemic stress.
    Barnes JA; Smoak IW
    Anat Embryol (Berl); 2000 Jul; 202(1):67-74. PubMed ID: 10926097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cardiomyocyte DNA synthesis and binucleation during murine development.
    Soonpaa MH; Kim KK; Pajak L; Franklin M; Field LJ
    Am J Physiol; 1996 Nov; 271(5 Pt 2):H2183-9. PubMed ID: 8945939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polycomb Group Protein CBX7 Represses Cardiomyocyte Proliferation Through Modulation of the TARDBP/RBM38 Axis.
    Cho KW; Andrade M; Bae S; Kim S; Eyun Kim J; Jang EY; Lee S; Husain A; Sutliff RL; Calvert JW; Park C; Yoon YS
    Circulation; 2023 Jun; 147(24):1823-1842. PubMed ID: 37158107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.