These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 9281457)

  • 41. Cellular and Molecular Mechanism of Cardiac Regeneration: A Comparison of Newts, Zebrafish, and Mammals.
    de Wit L; Fang J; Neef K; Xiao J; A Doevendans P; Schiffelers RM; Lei Z; Sluijter JPG
    Biomolecules; 2020 Aug; 10(9):. PubMed ID: 32825069
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine.
    Karbassi E; Fenix A; Marchiano S; Muraoka N; Nakamura K; Yang X; Murry CE
    Nat Rev Cardiol; 2020 Jun; 17(6):341-359. PubMed ID: 32015528
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Maturation of pluripotent stem cell derived cardiomyocytes: The new challenge.
    Aigha I; Raynaud C
    Glob Cardiol Sci Pract; 2016 Mar; 2016(1):e201606. PubMed ID: 29043256
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dexamethasone Induces Cardiomyocyte Terminal Differentiation via Epigenetic Repression of Cyclin D2 Gene.
    Gay MS; Dasgupta C; Li Y; Kanna A; Zhang L
    J Pharmacol Exp Ther; 2016 Aug; 358(2):190-8. PubMed ID: 27302109
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cardiac Regeneration and Stem Cells.
    Zhang Y; Mignone J; MacLellan WR
    Physiol Rev; 2015 Oct; 95(4):1189-204. PubMed ID: 26269526
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dexamethasone Treatment of Newborn Rats Decreases Cardiomyocyte Endowment in the Developing Heart through Epigenetic Modifications.
    Gay MS; Li Y; Xiong F; Lin T; Zhang L
    PLoS One; 2015; 10(4):e0125033. PubMed ID: 25923220
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tudor staphylococcal nuclease (Tudor-SN), a novel regulator facilitating G1/S phase transition, acting as a co-activator of E2F-1 in cell cycle regulation.
    Su C; Zhang C; Tecle A; Fu X; He J; Song J; Zhang W; Sun X; Ren Y; Silvennoinen O; Yao Z; Yang X; Wei M; Yang J
    J Biol Chem; 2015 Mar; 290(11):7208-20. PubMed ID: 25627688
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Harnessing the power of dividing cardiomyocytes.
    Muralidhar SA; Mahmoud AI; Canseco D; Xiao F; Sadek HA
    Glob Cardiol Sci Pract; 2013; 2013(3):212-21. PubMed ID: 24689023
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Classic "broken cell" techniques and newer live cell methods for cell cycle assessment.
    Henderson L; Bortone DS; Lim C; Zambon AC
    Am J Physiol Cell Physiol; 2013 May; 304(10):C927-38. PubMed ID: 23392113
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Frataxin deficiency unveils cell-context dependent actions of insulin-like growth factor I on neurons.
    Franco C; Fernández S; Torres-Alemán I
    Mol Neurodegener; 2012 Oct; 7():51. PubMed ID: 23039828
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combining neuropeptide Y and mesenchymal stem cells reverses remodeling after myocardial infarction.
    Wang Y; Zhang D; Ashraf M; Zhao T; Huang W; Ashraf A; Balasubramaniam A
    Am J Physiol Heart Circ Physiol; 2010 Jan; 298(1):H275-86. PubMed ID: 19897711
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Over expression of Plk1 does not induce cell division in rat cardiac myocytes in vitro.
    Coxon CH; Bicknell KA; Moseley FL; Brooks G
    PLoS One; 2009 Aug; 4(8):e6752. PubMed ID: 19707596
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cardiac myocyte cell cycle control in development, disease, and regeneration.
    Ahuja P; Sdek P; MacLellan WR
    Physiol Rev; 2007 Apr; 87(2):521-44. PubMed ID: 17429040
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microarray analysis of gene expression profiles of cardiac myocytes and fibroblasts after mechanical stress, ionising or ultraviolet radiation.
    Boerma M; van der Wees CG; Vrieling H; Svensson JP; Wondergem J; van der Laarse A; Mullenders LH; van Zeeland AA
    BMC Genomics; 2005 Jan; 6():6. PubMed ID: 15656902
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Forced expression of the cyclin B1-CDC2 complex induces proliferation in adult rat cardiomyocytes.
    Bicknell KA; Coxon CH; Brooks G
    Biochem J; 2004 Sep; 382(Pt 2):411-6. PubMed ID: 15253691
    [TBL] [Abstract][Full Text] [Related]  

  • 56. p21(CIP1) Controls proliferating cell nuclear antigen level in adult cardiomyocytes.
    Engel FB; Hauck L; Boehm M; Nabel EG; Dietz R; von Harsdorf R
    Mol Cell Biol; 2003 Jan; 23(2):555-65. PubMed ID: 12509454
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division.
    Wurm T; Chen H; Hodgson T; Britton P; Brooks G; Hiscox JA
    J Virol; 2001 Oct; 75(19):9345-56. PubMed ID: 11533198
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression and activities of cyclins and cyclin-dependent kinases in developing rat ventricular myocytes.
    Brooks G; Poolman RA; McGill CJ; Li JM
    J Mol Cell Cardiol; 1997 Aug; 29(8):2261-71. PubMed ID: 9281457
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expressions and activities of cell cycle regulatory molecules during the transition from myocyte hyperplasia to hypertrophy.
    Poolman RA; Brooks G
    J Mol Cell Cardiol; 1998 Oct; 30(10):2121-35. PubMed ID: 9799664
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Persistent and heterogenous expression of the cyclin-dependent kinase inhibitor, p27KIP1, in rat hearts during development.
    Koh KN; Kang MJ; Frith-Terhune A; Park SK; Kim I; Lee CO; Koh GY
    J Mol Cell Cardiol; 1998 Mar; 30(3):463-74. PubMed ID: 9515024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.