BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9281908)

  • 1. The effect of shear stress on solitary waves in arteries.
    Demiray H
    Bull Math Biol; 1997 Sep; 59(5):993-1012. PubMed ID: 9281908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waves in initially stressed fluid-filled thick tubes.
    Demiray H
    J Biomech; 1997 Mar; 30(3):273-6. PubMed ID: 9119827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evolution of pulse speed in arteries.
    Demiray H
    Bull Math Biol; 1996 Jan; 58(1):129-40. PubMed ID: 8819757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsating blood flow in an initially stressed, anisotropic elastic tube: linear approximation of pressure waves.
    Tsangaris S; Drikakis D
    Med Biol Eng Comput; 1989 Jan; 27(1):82-8. PubMed ID: 2779302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quasi-linear constitutive relation for arterial wall materials.
    Demiray H
    J Biomech; 1996 Aug; 29(8):1011-4. PubMed ID: 8817367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of transmural pressure and muscular activity on pulse waves in arteries.
    Rachev AI
    J Biomech Eng; 1980 May; 102(2):119-23. PubMed ID: 7412234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries.
    Rachev A; Hayashi K
    Ann Biomed Eng; 1999; 27(4):459-68. PubMed ID: 10468230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wall stress and deformation analysis in a numerical model of pulse wave propagation.
    He F; Hua L; Gao L
    Biomed Mater Eng; 2015; 26 Suppl 1():S527-32. PubMed ID: 26406044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave propagation through a newtonian fluid contained within a thick-walled, viscoelastic tube.
    Ox RH
    Biophys J; 1968 Jun; 8(6):691-709. PubMed ID: 5699803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conceptual model of arterial tree based on solitons by compartments.
    Alfonso MR; Cymberknop LJ; Legnani W; Pessana F; Armentano RL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3224-7. PubMed ID: 25570677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dispersion of fiber orientation on the mechanical property of the arterial wall.
    Ren JS
    J Theor Biol; 2012 May; 301():153-60. PubMed ID: 22391392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of anisotropic elastic properties of the arteries by exponential and polynomial strain energy functions.
    Hudetz AG; Monos E
    Acta Physiol Acad Sci Hung; 1981; 57(2):111-22. PubMed ID: 7315373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stress-strain relation for a rat abdominal aorta.
    Demiray H; Weizsäcker HW; Pascale K; Erbay HA
    J Biomech; 1988; 21(5):369-74. PubMed ID: 3417689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave propagation through a viscous fluid-filled elastic tube under initial pressure: theoretical and biophysical model.
    Žikić D; Žikić K
    Eur Biophys J; 2022 Jul; 51(4-5):365-374. PubMed ID: 35618857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for geometric and mechanical adaptation of arteries to sustained hypertension.
    Rachev A; Stergiopulos N; Meister JJ
    J Biomech Eng; 1998 Feb; 120(1):9-17. PubMed ID: 9675674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure.
    Rachev A; Stergiopulos N; Meister JJ
    J Biomech; 1996 May; 29(5):635-42. PubMed ID: 8707790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wave propagation through a viscous incompressible fluid contained in an initially stressed elastic tube.
    Atabek HB; Lew HS
    Biophys J; 1966 Jul; 6(4):481-503. PubMed ID: 19210972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulse Wave Velocity Prediction and Compliance Assessment in Elastic Arterial Segments.
    Lillie JS; Liberson AS; Mix D; Schwarz KQ; Chandra A; Phillips DB; Day SW; Borkholder DA
    Cardiovasc Eng Technol; 2015 Mar; 6(1):49-58. PubMed ID: 26577102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of flow and wall behaviour in a mildly stenosed tube.
    Lee KW; Xu XY
    Med Eng Phys; 2002 Nov; 24(9):575-86. PubMed ID: 12376044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of initial stresses on the wave propagation in arteries.
    Misra JC; Choudhury KR
    J Math Biol; 1983; 18(1):53-67. PubMed ID: 6631263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.