These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 9281908)

  • 21. The dissipation and dispersion of small waves in arteries and veins with viscoelastic wall properties.
    Maxwell JA; Anliker M
    Biophys J; 1968 Aug; 8(8):920-50. PubMed ID: 5661901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells.
    Wang DM; Tarbell JM
    J Biomech Eng; 1995 Aug; 117(3):358-63. PubMed ID: 8618390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling pressure-area relations of coronary blood vessels embedded in cardiac muscle in diastole and systole.
    Vis MA; Sipkema P; Westerhof N
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2531-43. PubMed ID: 7611503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phase and group velocities for shear wave propagation in an incompressible, hyperelastic material with uniaxial stretch.
    Rouze NC; Caenen A; Nightingale KR
    Phys Med Biol; 2022 Apr; 67(9):. PubMed ID: 35263729
    [No Abstract]   [Full Text] [Related]  

  • 26. Improved solution for solitary waves in arteries.
    Epstein M; Johnston C
    J Math Biol; 1999 Jul; 39(1):1-18. PubMed ID: 10444850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A study on large radial motion of arteries in vivo.
    Singh SI; Devi LS
    J Biomech; 1990; 23(11):1087-91. PubMed ID: 2277043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonlinear analysis of oscillatory flow, with a nonzero mean, in an elastic tube (artery).
    Wang DM; Tarbell JM
    J Biomech Eng; 1995 Feb; 117(1):127-35. PubMed ID: 7609476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical simulation for the propagation of nonlinear pulsatile waves in arteries.
    Ma X; Lee GC; Wu SG
    J Biomech Eng; 1992 Nov; 114(4):490-6. PubMed ID: 1487901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth and residual stresses of arterial walls.
    Ren JS
    J Theor Biol; 2013 Nov; 337():80-8. PubMed ID: 23968891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 1: Basic theory.
    Berkouk K; Carpenter PW; Lucey AD
    J Biomech Eng; 2003 Dec; 125(6):852-6. PubMed ID: 14986410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the origin and dynamics of the vasomotion of small arteries.
    Gonzalez-Fernandez JM; Ermentrout B
    Math Biosci; 1994 Feb; 119(2):127-67. PubMed ID: 8142694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A theoretical investigation of low frequency diameter oscillations of muscular arteries.
    Achakri H; Rachev A; Stergiopulos N; Meister JJ
    Ann Biomed Eng; 1994; 22(3):253-63. PubMed ID: 7978546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wave propagation through a viscous fluid contained in a tethered, initially stresses, orthotropic elastic tube.
    Atabek HB
    Biophys J; 1968 May; 8(5):626-49. PubMed ID: 5699800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effects of wall thickness, axial strain and end proximity on the pressure-area relation of collapsible tubes.
    Bertram CD
    J Biomech; 1987; 20(9):863-76. PubMed ID: 3680312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Residual strains in conduit arteries.
    Rachev A; Greenwald SE
    J Biomech; 2003 May; 36(5):661-70. PubMed ID: 12694996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mechanical buckling of curved arteries.
    Han HC
    Mol Cell Biomech; 2009 Jun; 6(2):93-9. PubMed ID: 19496257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inflation waves induced by axial acceleration of the aorta.
    Elad D; Foux A; Lanir Y; Kivity Y
    J Biomech Eng; 1986 Aug; 108(3):281-8. PubMed ID: 3747472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the propagation of a wave front in viscoelastic arteries.
    Holenstein R; Nerem RM; Niederer PF
    J Biomech Eng; 1984 May; 106(2):115-22. PubMed ID: 6738015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of smooth muscle contribution to descending thoracic aortic elastic mechanics in conscious dogs.
    Barra JG; Armentano RL; Levenson J; Fischer EI; Pichel RH; Simon A
    Circ Res; 1993 Dec; 73(6):1040-50. PubMed ID: 8222076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.