These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9282903)

  • 21. DPOAE level shifts and ABR threshold shifts compared to detailed analysis of histopathological damage from noise.
    Harding GW; Bohne BA; Ahmad M
    Hear Res; 2002 Dec; 174(1-2):158-71. PubMed ID: 12433407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time course of organ of Corti degeneration after noise exposure.
    Bohne BA; Kimlinger M; Harding GW
    Hear Res; 2017 Feb; 344():158-169. PubMed ID: 27890677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. F-actin, tubulin and spectrin in the organ of Corti: comparative distribution in different cell types and mammalian species.
    Raphael Y; Athey BD; Wang Y; Lee MK; Altschuler RA
    Hear Res; 1994 Jun; 76(1-2):173-87. PubMed ID: 7928710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noise induced changes in the expression of p38/MAPK signaling proteins in the sensory epithelium of the inner ear.
    Jamesdaniel S; Hu B; Kermany MH; Jiang H; Ding D; Coling D; Salvi R
    J Proteomics; 2011 Dec; 75(2):410-24. PubMed ID: 21871588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fimbrin expression in the developing rat cochlea.
    Zine A; Hafidi A; Romand R
    Hear Res; 1995 Jul; 87(1-2):165-9. PubMed ID: 8567434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporary DPOAE level shifts, ABR threshold shifts and histopathological damage following below-critical-level noise exposures.
    Harding GW; Bohne BA
    Hear Res; 2004 Oct; 196(1-2):94-108. PubMed ID: 15464306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of heat stress on Young's modulus of outer hair cells in mice.
    Murakoshi M; Yoshida N; Kitsunai Y; Iida K; Kumano S; Suzuki T; Kobayashi T; Wada H
    Brain Res; 2006 Aug; 1107(1):121-30. PubMed ID: 16822487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-frequency 'conditioning' provides long-term protection from noise-induced threshold shifts in chinchillas.
    McFadden SL; Henderson D; Shen YH
    Hear Res; 1997 Jan; 103(1-2):142-50. PubMed ID: 9007581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regenerated nerve fibers in the noise-damaged chinchilla cochlea are not efferent.
    Strominger RN; Bohne BA; Harding GW
    Hear Res; 1995 Dec; 92(1-2):52-62. PubMed ID: 8647746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3-D analysis of F-actin in stereocilia of cochlear hair cells after loud noise exposure.
    Avinash GB; Nuttall AL; Raphael Y
    Hear Res; 1993 May; 67(1-2):139-46. PubMed ID: 8340265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of high-frequency interrupted noise exposures on evoked-potential thresholds, distortion-product otoacoustic emissions, and outer hair cell loss.
    Subramaniam M; Henselman LW; Spongr V; Henderson D; Powers NL
    Ear Hear; 1995 Aug; 16(4):372-81. PubMed ID: 8549893
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of low-frequency "conditioning" on hearing loss from high-frequency exposure.
    Subramaniam M; Henderson D; Spongr V
    J Acoust Soc Am; 1993 Feb; 93(2):952-6. PubMed ID: 8445129
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noise-induced threshold shift dynamics measured with distortion-product otoacoustic emissions and auditory evoked potentials in chinchillas with inner hair cell deficient cochleas.
    Hamernik RP; Ahroon WA; Jock BM; Bennett JA
    Hear Res; 1998 Apr; 118(1-2):73-82. PubMed ID: 9606062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in distortion product otoacoustic emissions during prolonged noise exposure.
    Eddins AC; Zuskov M; Salvi RJ
    Hear Res; 1999 Jan; 127(1-2):119-28. PubMed ID: 9925023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of 'conditioning' exposures on hearing loss from impulse noise.
    Henselman LW; Henderson D; Subramaniam M; Sallustio V
    Hear Res; 1994 Jul; 78(1):1-10. PubMed ID: 7961172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conditioning-induced protection from impulse noise in female and male chinchillas.
    McFadden SL; Zheng XY; Ding DL
    J Acoust Soc Am; 2000 Apr; 107(4):2162-8. PubMed ID: 10790042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intercellular contacts between chick stereocilia after acoustic overstimulation.
    Raphael Y; Wang Y; Lee MK
    Hear Res; 1994 Feb; 73(1):85-91. PubMed ID: 8157509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. R-phenylisopropyladenosine attenuates noise-induced hearing loss in the chinchilla.
    Hu BH; Zheng XY; McFadden SL; Kopke RD; Henderson D
    Hear Res; 1997 Nov; 113(1-2):198-206. PubMed ID: 9387999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of the cochlear efferent system in acquired resistance to noise-induced hearing loss.
    Zheng XY; Henderson D; McFadden SL; Hu BH
    Hear Res; 1997 Feb; 104(1-2):191-203. PubMed ID: 9119763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of 'conditioning' on hearing loss from a high frequency traumatic exposure.
    Subramaniam M; Henderson D; Campo P; Spongr V
    Hear Res; 1992 Feb; 58(1):57-62. PubMed ID: 1559906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.