These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9282903)

  • 41. Cell-cell junctions: a target of acoustic overstimulation in the sensory epithelium of the cochlea.
    Zheng G; Hu BH
    BMC Neurosci; 2012 Jun; 13():71. PubMed ID: 22712683
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Anatomical correlates of impulse noise-induced mechanical damage in the cochlea.
    Hamernik RP; Turrentine G; Roberto M; Salvi R; Henderson D
    Hear Res; 1984 Mar; 13(3):229-47. PubMed ID: 6735931
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The protective effect of conditioning on noise-induced hearing loss is frequency-dependent.
    Pourbakht A; Imani A
    Acta Med Iran; 2012; 50(10):664-9. PubMed ID: 23275293
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protection from noise induced hearing loss: is prolonged 'conditioning' necessary?
    Subramaniam M; Henderson D; Spongr VP
    Hear Res; 1993 Feb; 65(1-2):234-9. PubMed ID: 8458754
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Synergetic protective effects of glial cell line-derived neurotrophic factor combined with neurotrophin-3 in F-actin on hair cell after noise trauma].
    Yang W; Hu B; Guo W; Hu Y; Wang P; Jiang S
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Oct; 36(5):342-5. PubMed ID: 12761941
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Extremely rapid induction of outer hair cell apoptosis in the chinchilla cochlea following exposure to impulse noise.
    Hu BH; Henderson D; Nicotera TM
    Hear Res; 2006 Jan; 211(1-2):16-25. PubMed ID: 16219436
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure of the stereocilia side links and morphology of auditory hair bundle in relation to noise exposure in the chinchilla.
    Tsuprun V; Schachern PA; Cureoglu S; Paparella M
    J Neurocytol; 2003 Nov; 32(9):1117-28. PubMed ID: 15044843
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Degeneration of axons in the brainstem of the chinchilla after auditory overstimulation.
    Kim J; Morest DK; Bohne BA
    Hear Res; 1997 Jan; 103(1-2):169-91. PubMed ID: 9007583
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differences in the distribution of F-actin in outer hair cells along the organ of Corti.
    Thorne PR; Carlisle L; Zajic G; Schacht J; Altschuler RA
    Hear Res; 1987; 30(2-3):253-65. PubMed ID: 3680068
    [TBL] [Abstract][Full Text] [Related]  

  • 50. WDR1 colocalizes with ADF and actin in the normal and noise-damaged chick cochlea.
    Oh SH; Adler HJ; Raphael Y; Lomax MI
    J Comp Neurol; 2002 Jul; 448(4):399-409. PubMed ID: 12115702
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The cubic distortion product otoacoustic emissions from the normal and noise-damaged chinchilla cochlea.
    Hamernik RP; Ahroon WA; Lei SF
    J Acoust Soc Am; 1996 Aug; 100(2 Pt 1):1003-12. PubMed ID: 8759953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of noise and salicylate on hair cell loss in the chinchilla cochlea.
    Spongr VP; Boettcher FA; Saunders SS; Salvi RJ
    Arch Otolaryngol Head Neck Surg; 1992 Feb; 118(2):157-64. PubMed ID: 1540346
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sound conditioning reduces noise-induced permanent threshold shift in mice.
    Yoshida N; Liberman MC
    Hear Res; 2000 Oct; 148(1-2):213-9. PubMed ID: 10978838
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Measures of auditory brain-stem responses, distortion product otoacoustic emissions, hair cell loss, and forward masked tuning curves in the waltzing guinea pig.
    Canlon B; Marklund K; Borg E
    J Acoust Soc Am; 1993 Dec; 94(6):3232-43. PubMed ID: 8300958
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of delayed and extended antioxidant treatment on acute acoustic trauma.
    Choi CH; Chen K; Du X; Floyd RA; Kopke RD
    Free Radic Res; 2011 Oct; 45(10):1162-72. PubMed ID: 21756051
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Increased resistance to free radical damage induced by low-level sound conditioning.
    Harris KC; Bielefeld E; Hu BH; Henderson D
    Hear Res; 2006 Mar; 213(1-2):118-29. PubMed ID: 16466871
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Audiometric and histological differences between the effects of continuous and impulsive noise exposures.
    Hamernik RP; Ahroon WA; Hsueh KD; Lei SF; Davis RI
    J Acoust Soc Am; 1993 Apr; 93(4 Pt 1):2088-95. PubMed ID: 8473621
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physiological and histological changes associated with the reduction in threshold shift during interrupted noise exposure.
    Boettcher FA; Spongr VP; Salvi RJ
    Hear Res; 1992 Oct; 62(2):217-36. PubMed ID: 1429265
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions.
    Nuttall AL; Ren T
    Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of interrupted noise exposures on the noise-damaged cochlea.
    Ahroon WA; Hamernik RP
    Hear Res; 2000 May; 143(1-2):103-9. PubMed ID: 10771187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.