These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9283029)

  • 21. Gel--sol transition in kappa-carrageenan systems: microviscosity of hydrophobic microdomains, dynamic rheology and molecular conformation.
    Hugerth A; Nilsson S; Sundelöf LO
    Int J Biol Macromol; 1999 Oct; 26(1):69-76. PubMed ID: 10520958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physico-chemical properties of carrageenan gels in presence of various cations.
    Michel AS; Mestdagh MM; Axelos MA
    Int J Biol Macromol; 1997 Aug; 21(1-2):195-200. PubMed ID: 9283036
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterisation of rheology and microstructures of κ-carrageenan in ethanol-water mixtures.
    Yang Z; Yang H; Yang H
    Food Res Int; 2018 May; 107():738-746. PubMed ID: 29580542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermoreversible gelation of kappa-carrageenan: relation between conformational transition and aggregation.
    Mangione MR; Giacomazza D; Bulone D; Martorana V; San Biagio PL
    Biophys Chem; 2003 May; 104(1):95-105. PubMed ID: 12834830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic degradation of κ-carrageenan in aqueous solution.
    Collén PN; Lemoine M; Daniellou R; Guégan JP; Paoletti S; Helbert W
    Biomacromolecules; 2009 Jul; 10(7):1757-67. PubMed ID: 19459672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of ionic effects on the ordering and association phenomena in dilute and semidilute carrageenan solutions.
    Mischenko N; Denef B; Koch MH; Reynaers H
    Int J Biol Macromol; 1996 Oct; 19(3):185-94. PubMed ID: 8910059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sol-Gel transition behavior of pure iota-carrageenan in both salt-free and added salt states.
    Hossain KS; Miyanaga K; Maeda H; Nemoto N
    Biomacromolecules; 2001; 2(2):442-9. PubMed ID: 11749204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of two functional dextrins on the gel properties of kappa-carrageenan.
    Yuan C; Zhan W; Cui B; Yu B; Liu P; Wu Z
    Food Res Int; 2020 Dec; 138(Pt A):109666. PubMed ID: 33292956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fucoidan hydrogels induced by κ-carrageenan: Rheological, thermal and structural characterization.
    Wang N; Tian J; Wang L; Song S; Ai C; Janaswamy S; Wen C
    Int J Biol Macromol; 2021 Nov; 191():514-520. PubMed ID: 34563575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dendrimer diffusion in kappa-carrageenan gel structures.
    Lorén N; Shtykova L; Kidman S; Jarvoll P; Nydén M; Hermansson AM
    Biomacromolecules; 2009 Feb; 10(2):275-84. PubMed ID: 19166302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Mixing Ratio and pH on the Electrostatic Interactions of Hydrolyzed Alaska Pollock Protein and κ-Carrageenan.
    Cui X; Yu F; Xue Y; Zhang T; Ji L; Wang Y; Xue C
    J Food Sci; 2018 Aug; 83(8):2176-2182. PubMed ID: 30059140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The gelling of κ-carrageenan in light and heavy water.
    Cardoso MV; Sabadini E
    Carbohydr Res; 2010 Nov; 345(16):2368-73. PubMed ID: 20869043
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of osmotic and weight pressure on water release from polysaccharide ionic gels.
    Ako K
    Carbohydr Polym; 2017 Aug; 169():376-384. PubMed ID: 28504158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure of aggregating kappa-carrageenan fractions studied by light scattering.
    Meunier V; Nicolai T; Durand D
    Int J Biol Macromol; 2001 Jan; 28(2):157-65. PubMed ID: 11164233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mixed iota-kappa carrageenan gels.
    Ridout MJ; Garza S; Brownsey GJ; Morris VJ
    Int J Biol Macromol; 1996 Feb; 18(1-2):5-8. PubMed ID: 8852747
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of charge density of polysaccharides on self-assembled intragastric gelation of whey protein/polysaccharide under simulated gastric conditions.
    Zhang S; Zhang Z; Vardhanabhuti B
    Food Funct; 2014 Aug; 5(8):1829-38. PubMed ID: 24920131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computer modelling of kappa carrageenan-mannan interactions.
    Turquois T; Rochas C; Taravel FR; Tvaroska I
    J Mol Recognit; 1994 Dec; 7(4):243-50. PubMed ID: 7734149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of whey protein-kappa carrageenan hydrogel properties via enzymatic protein modification.
    Selig MJ; Dar BN; Kierulf A; Ravanfar R; Rizvi SSH; Abbaspourrad A
    Food Funct; 2018 Apr; 9(4):2313-2319. PubMed ID: 29577117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of the linear charge density of carrageenan on the ion binding investigated by differential scanning calorimetry, dc conductivity, and kHz dielectric relaxation.
    Takemasa M; Nishinari K
    Colloids Surf B Biointerfaces; 2004 Nov; 38(3-4):231-40. PubMed ID: 15542331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. N.m.r. studies of synergistic kappa carrageenan-carob galactomannan gels.
    Rochas C; Taravel FR; Turquois T
    Int J Biol Macromol; 1990 Dec; 12(6):353-8. PubMed ID: 2088491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.