These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9283091)

  • 1. Water accessibility to the tryptophan indole N-H sites of gramicidin A transmembrane channel: detection of positional shifts of tryptophans 11 and 13 along the channel axis upon cation binding.
    Maruyama T; Takeuchi H
    Biochemistry; 1997 Sep; 36(36):10993-1001. PubMed ID: 9283091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman linear intensity difference of membrane-bound peptides: indole ring orientations of tryptophans 11 and 13 in the gramicidin A transmembrane channel.
    Maruyama T; Takeuchi H
    Biospectroscopy; 1998; 4(3):171-84. PubMed ID: 9639108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating dipoles for structure-function correlations in the gramicidin A channel.
    Cotten M; Tian C; Busath DD; Shirts RB; Cross TA
    Biochemistry; 1999 Jul; 38(29):9185-97. PubMed ID: 10413493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environments and conformations of tryptophan side chains of gramicidin A in phospholipid bilayers studied by Raman spectroscopy.
    Takeuchi H; Nemoto Y; Harada I
    Biochemistry; 1990 Feb; 29(6):1572-9. PubMed ID: 1692241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environment- and sequence-dependent modulation of the double-stranded to single-stranded conformational transition of gramicidin A in membranes.
    Salom D; Pérez-Payá E; Pascal J; Abad C
    Biochemistry; 1998 Oct; 37(40):14279-91. PubMed ID: 9760266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monovalent cation transport: lack of structural deformation upon cation binding.
    Tian F; Lee KC; Hu W; Cross TA
    Biochemistry; 1996 Sep; 35(37):11959-66. PubMed ID: 8810900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gramicidin D conformation, dynamics and membrane ion transport.
    Burkhart BM; Gassman RM; Langs DA; Pangborn WA; Duax WL; Pletnev V
    Biopolymers; 1999; 51(2):129-44. PubMed ID: 10397797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Gramicidin channels: a new mechanism for transmembrane transfer of ions (from high resolution x-ray structural studies of the antibiotic)].
    Tishchenko GN; Andrianov VI; Vaĭnshteĭn BK; Dodson E
    Bioorg Khim; 1992 Mar; 18(3):357-73. PubMed ID: 1381919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel.
    Hu W; Lee KC; Cross TA
    Biochemistry; 1993 Jul; 32(27):7035-47. PubMed ID: 7687467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the gramicidin/potassium thiocyanate complex.
    Doyle DA; Wallace BA
    J Mol Biol; 1997 Mar; 266(5):963-77. PubMed ID: 9086274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation of the acylation site of palmitoylgramicidin in lipid bilayers of dimyristoylphosphatidylcholine.
    Koeppe RE; Vogt TC; Greathouse DV; Killian JA; de Kruijff B
    Biochemistry; 1996 Mar; 35(11):3641-8. PubMed ID: 8639517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cation binding induced changes in 15N CSA in a membrane-bound polypeptide.
    Tian F; Cross TA
    J Magn Reson; 1998 Dec; 135(2):535-40. PubMed ID: 9878481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The divalent cation-binding sites of gramicidin A transmembrane ion-channel.
    Golovanov AP; Barsukov IL; Arseniev AS; Bystrov VF; Sukhanov SV; Barsukov LI
    Biopolymers; 1991 Mar; 31(4):425-34. PubMed ID: 1713797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultraviolet resonance Raman spectra of Trp-182 and Trp-189 in bacteriorhodopsin: novel information on the structure of Trp-182 and its steric interaction with retinal.
    Hashimoto S; Obata K; Takeuchi H; Needleman R; Lanyi JK
    Biochemistry; 1997 Sep; 36(39):11583-90. PubMed ID: 9305948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tryptophan hydrogen bonding and electric dipole moments: functional roles in the gramicidin channel and implications for membrane proteins.
    Hu W; Cross TA
    Biochemistry; 1995 Oct; 34(43):14147-55. PubMed ID: 7578012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The preference of tryptophan for membrane interfaces: insights from N-methylation of tryptophans in gramicidin channels.
    Sun H; Greathouse DV; Andersen OS; Koeppe RE
    J Biol Chem; 2008 Aug; 283(32):22233-43. PubMed ID: 18550546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium ion binding in the gramicidin A channel. Solid-state NMR studies of the tryptophan residues.
    Separovic F; Gehrmann J; Milne T; Cornell BA; Lin SY; Smith R
    Biophys J; 1994 Oct; 67(4):1495-500. PubMed ID: 7529584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How can the aromatic side-chains modulate the conductance of the gramicidin channel? A new approach using non-coded amino acids.
    Daumas P; Benamar D; Heitz F; Ranjalahy-Rasoloarijao L; Mouden R; Lazaro R; Pullman A
    Int J Pept Protein Res; 1991 Sep; 38(3):218-28. PubMed ID: 1722196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan dynamics and structural refinement in a lipid bilayer environment: solid state NMR of the gramicidin channel.
    Hu W; Lazo ND; Cross TA
    Biochemistry; 1995 Oct; 34(43):14138-46. PubMed ID: 7578011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cation transport: an example of structural based selectivity.
    Tian F; Cross TA
    J Mol Biol; 1999 Feb; 285(5):1993-2003. PubMed ID: 9925780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.