These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 9283664)
1. Characterization and biological activity of a Brazilian isolate of Bacillus sphaericus (Neide) highly toxic to mosquito larvae. Vilarinhos Pde T; Maruniak JE; Hall DW Mem Inst Oswaldo Cruz; 1996; 91(6):771-6. PubMed ID: 9283664 [TBL] [Abstract][Full Text] [Related]
2. An isolate of Bacillus circulans toxic to mosquito larvae. Darriet F; Hougard JM J Am Mosq Control Assoc; 2002 Mar; 18(1):65-7. PubMed ID: 11998934 [TBL] [Abstract][Full Text] [Related]
3. Molecular characterization of mosquitocidal Bacillus sphaericus isolated from Tamil Nadu, India. Prabhu DI; Sankar SG; Vasan PT; Piriya PS; Selvan BK; Vennison SJ Acta Trop; 2013 Sep; 127(3):158-64. PubMed ID: 23648218 [TBL] [Abstract][Full Text] [Related]
4. A mosquito-virulent Bacillus sphaericus in adult Simulium damnosum from northern Nigeria. Weiser J Zentralbl Mikrobiol; 1984; 139(1):57-60. PubMed ID: 6720123 [TBL] [Abstract][Full Text] [Related]
5. Isolation and laboratory evaluation of an indigenous strain of Bacillus sphaericus (9001). Gupta DK; Sharma RC; Bhatt RM; Gautam AS Indian J Malariol; 1991 Sep; 28(3):147-50. PubMed ID: 1822451 [TBL] [Abstract][Full Text] [Related]
6. Characterization and toxicity to mosquito larvae of four Bacillus sphaericus strains isolated from Brazilian soils. Schenkel RG; Nicolas L; Frachon E; Hamon S J Invertebr Pathol; 1992 Jul; 60(1):10-4. PubMed ID: 1352318 [TBL] [Abstract][Full Text] [Related]
7. The introduction into bacillus sphaericus of the Bacillus thuringiensis subsp. medellin Cyt1Ab1 gene results in higher susceptibility of resistant mosquito larva populations to B. sphaericus. Thiéry I; Hamon S; Delécluse A; Orduz S Appl Environ Microbiol; 1998 Oct; 64(10):3910-6. PubMed ID: 9758818 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of Bacillus thuringiensis and Bacillus sphaericus Strains from Chinese Soils Toxic to Mosquito Larvae. Sun M; Luo X; Dai J; Qu K; Liu Z; Yu L; Chen Y; Yu Z J Invertebr Pathol; 1996 Jul; 68(1):74-7. PubMed ID: 8812574 [TBL] [Abstract][Full Text] [Related]
9. Laboratory and simulated field evaluation of a new recombinant of Bacillus thuringiensis ssp. israelensis and Bacillus sphaericus against Culex mosquito larvae (Diptera: Culicidae). Zahiri NS; Federici BA; Mulla MS J Med Entomol; 2004 May; 41(3):423-9. PubMed ID: 15185945 [TBL] [Abstract][Full Text] [Related]
10. Recycling of Bacillus sphaericus 2362 in mosquito larvae: a laboratory study. Charles JF; Nicolas L Ann Inst Pasteur Microbiol (1985); 1986; 137B(1):101-11. PubMed ID: 2893581 [TBL] [Abstract][Full Text] [Related]
11. Laboratory evaluation of three mosquito pathogenic strains of Bacillus sphaericus isolated in Egypt. Gharib AH; Wyman JA; Shihata ZA J Invertebr Pathol; 1989 Jul; 54(1):57-62. PubMed ID: 2738418 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of a novel marine Bacillus cereus for mosquito control. Poopathi S; Mani C; Thirugnanasambantham K; Praba VL; Ahangar NA; Balagangadharan K Parasitol Res; 2014 Jan; 113(1):323-32. PubMed ID: 24192866 [TBL] [Abstract][Full Text] [Related]
13. Small scale field trials of Bacillus sphaericus (strain 2362) against anopheline and culicine mosquito larvae in southern Mexico. Arredondo-Jiménez JI; López T; Rodríguez MH; Bown DN J Am Mosq Control Assoc; 1990 Jun; 6(2):300-5. PubMed ID: 2370538 [TBL] [Abstract][Full Text] [Related]
14. Studies on the Bacillus sphaericus larvicidal activity against malarial vector species in Amazonia. Rodrigues IB; Tadei WP; Dias JM Mem Inst Oswaldo Cruz; 1998; 93(4):441-4. PubMed ID: 9711333 [TBL] [Abstract][Full Text] [Related]
15. Production of Bacillus sphaericus strain 1593 primary powder on media made from locally obtainable Nigerian agricultural products. Obeta JA; Okafor N Can J Microbiol; 1983 Jun; 29(6):704-9. PubMed ID: 6883226 [TBL] [Abstract][Full Text] [Related]
16. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Muthukumaran U; Govindarajan M; Rajeswary M Parasitol Res; 2015 Mar; 114(3):989-99. PubMed ID: 25544703 [TBL] [Abstract][Full Text] [Related]
17. Laboratory evaluation of Bacillus sphaericus recycling in mosquito larvae. Labib IM; Mohamad AA J Egypt Soc Parasitol; 2003 Aug; 33(2):425-36. PubMed ID: 14964657 [TBL] [Abstract][Full Text] [Related]
18. Laboratory and field evaluation of Spherix, a formulation of Bacillus sphaericus (B-101), to control breeding of Anopheles stephensi and Culex quinquefasciatus. Mittal PK; Adak T; Batra CP; Sharma VP Indian J Malariol; 1993 Jun; 30(2):81-9. PubMed ID: 8405598 [TBL] [Abstract][Full Text] [Related]
20. Occurrence of apocrine secretion in the larval gut epithelial cells of Aedes aegypti L., Anopheles albitarsis Lynch-Arribálzaga and Culex quinquefasciatus say (Diptera: Culicidae): a defense strategy against infection by Bacillus sphaericus Neide? Oliveira CD; Tadei WP; Abdalla FC Neotrop Entomol; 2009; 38(5):624-31. PubMed ID: 19943010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]