These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 9283752)

  • 21. An analysis of the kinetics of enzymatic systems with unstable species.
    Garrido-del Solo C; Havsteen BH; Varon R
    Biosystems; 1996; 38(1):75-86. PubMed ID: 8833750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exact Product Formation Rates for Stochastic Enzyme Kinetics.
    Grima R; Leier A
    J Phys Chem B; 2017 Jan; 121(1):13-23. PubMed ID: 27959536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of steady-state kinetic parameters for enzymes solubilized in water-in-oil microemulsion systems.
    Oldfield C
    Biochem J; 1990 Nov; 272(1):15-22. PubMed ID: 2264819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An investigation of the relationships between rate and driving force in simple uncatalysed and enzyme-catalysed reactions with applications of the findings to chemiosmotic reactions.
    Stoner CD
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):541-52. PubMed ID: 1533514
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rate equations and simulation curves for enzymatic reactions which utilize lipids as substrates. I. Interaction of enzymes with the monomers and micelles of soluble, amphiphilic lipids.
    Gatt S; Bartfai T
    Biochim Biophys Acta; 1977 Jul; 488(1):1-12. PubMed ID: 889849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Letter: Kinetic negative co-operativity in the allosteric model of Monod, Wyman and Changeux.
    Goldbeter A
    J Mol Biol; 1974 Nov; 90(1):185-90. PubMed ID: 4453011
    [No Abstract]   [Full Text] [Related]  

  • 27. An analytic solution to the Monod-Wyman-Changeux model and all parameters in this model.
    Zhou G; Ho PS; van Holde KE
    Biophys J; 1989 Feb; 55(2):275-80. PubMed ID: 2713440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mathematical modelling of dynamics and control in metabolic networks. II. Simple dimeric enzymes.
    Palsson BO; Jamier R; Lightfoot EN
    J Theor Biol; 1984 Nov; 111(2):303-21. PubMed ID: 6513573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Kinetic Analysis of Coupled (or Auxiliary) Enzyme Reactions.
    Eilertsen J; Schnell S
    Bull Math Biol; 2018 Dec; 80(12):3154-3183. PubMed ID: 30288641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A full stochastic description of the Michaelis-Menten reaction for small systems.
    Arányi P; Tóth J
    Acta Biochim Biophys Acad Sci Hung; 1977; 12(4):375-88. PubMed ID: 613716
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interdependence between cooperativity and control coefficients.
    Canela EI; Franco R; Cascante M
    Biosystems; 1989; 23(1):7-14. PubMed ID: 2624889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The computation of hyperbolic dependences in enzyme kinetics.
    Airas RK
    Biochem J; 1976 May; 155(2):449-52. PubMed ID: 938492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Final phase of enzyme reactions following a Michaelis-Menten mechanisms in which the free enzyme and/or the enzyme-substrate complex are unstable.
    Varón R; Garrido del Solo C; García-Moreno M; Sánchez-Gracia A; García-Cánovas F
    Biol Chem Hoppe Seyler; 1994 Jan; 375(1):35-42. PubMed ID: 8003255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the generality of Michaelian kinetics.
    Barel I; Brown FL
    J Chem Phys; 2017 Jan; 146(1):014101. PubMed ID: 28063450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Kinetic manifestations of slow isomerization of allosteric enzyme for the model of Monod, Wyman and Changeux].
    Kurganov BI; Dorozhko AI; Kagan ZS; Yakovlev VA
    Biokhimiia; 1975; 40(3):611-21. PubMed ID: 1203376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rates of reactions catalysed by a dimeric enzyme. Effects of the reaction scheme and the kinetic parameters on co-operativity.
    Ishikawa H; Ogino H; Oshida H
    Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):131-7. PubMed ID: 1741741
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic analysis of a Michaelis-Menten mechanism in which the enzyme is unstable.
    Garrido-del Solo C; García-Cánovas F; Havsteen BH; Varón-Castellanos R
    Biochem J; 1993 Sep; 294 ( Pt 2)(Pt 2):459-64. PubMed ID: 8373361
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic study of an enzyme-catalysed reaction in the presence of novel irreversible-type inhibitors that react with the product of enzymatic catalysis.
    Navarro-Lozano MJ; Valero E; Varon R; Garcia-Carmona F
    Bull Math Biol; 1995 Jan; 57(1):157-68. PubMed ID: 7833851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate.
    ter Kuile BH; Cook M
    Biochim Biophys Acta; 1994 Aug; 1193(2):235-9. PubMed ID: 8054344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Explicit analytic approximations for time-dependent solutions of the generalized integrated Michaelis-Menten equation.
    Goličnik M
    Anal Biochem; 2011 Apr; 411(2):303-5. PubMed ID: 21241654
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.