These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 9283753)
1. Introduction of a distance cut-off into structural alignment by the double dynamic programming algorithm. Toh H Comput Appl Biosci; 1997 Aug; 13(4):387-96. PubMed ID: 9283753 [TBL] [Abstract][Full Text] [Related]
5. Variable gap penalty for protein sequence-structure alignment. Madhusudhan MS; Marti-Renom MA; Sanchez R; Sali A Protein Eng Des Sel; 2006 Mar; 19(3):129-33. PubMed ID: 16423846 [TBL] [Abstract][Full Text] [Related]
7. Suboptimal sequence alignment in molecular biology. Alignment with error analysis. Zuker M J Mol Biol; 1991 Sep; 221(2):403-20. PubMed ID: 1920426 [TBL] [Abstract][Full Text] [Related]
8. Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Livingstone CD; Barton GJ Comput Appl Biosci; 1993 Dec; 9(6):745-56. PubMed ID: 8143162 [TBL] [Abstract][Full Text] [Related]
9. SE: an algorithm for deriving sequence alignment from a pair of superimposed structures. Tai CH; Vincent JJ; Kim C; Lee B BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S4. PubMed ID: 19208141 [TBL] [Abstract][Full Text] [Related]
10. The practical use of the A* algorithm for exact multiple sequence alignment. Lermen M; Reinert K J Comput Biol; 2000; 7(5):655-71. PubMed ID: 11153092 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive study on iterative algorithms of multiple sequence alignment. Hirosawa M; Totoki Y; Hoshida M; Ishikawa M Comput Appl Biosci; 1995 Feb; 11(1):13-8. PubMed ID: 7796270 [TBL] [Abstract][Full Text] [Related]
12. Using Variable-Length Aligned Fragment Pairs and an Improved Transition Function for Flexible Protein Structure Alignment. Cao H; Lu Y J Comput Biol; 2017 Jan; 24(1):2-12. PubMed ID: 27710035 [TBL] [Abstract][Full Text] [Related]
13. Protein structure comparisons using a combination of a genetic algorithm, dynamic programming and least-squares minimization. May AC; Johnson MS Protein Eng; 1994 Apr; 7(4):475-85. PubMed ID: 8029205 [TBL] [Abstract][Full Text] [Related]
14. A polynomial-time algorithm for a class of protein threading problems. Xu Y; Uberbacher EC Comput Appl Biosci; 1996 Dec; 12(6):511-7. PubMed ID: 9021270 [TBL] [Abstract][Full Text] [Related]
15. SALSA: improved protein database searching by a new algorithm for assembly of sequence fragments into gapped alignments. Rognes T; Seeberg E Bioinformatics; 1998; 14(10):839-45. PubMed ID: 9927712 [TBL] [Abstract][Full Text] [Related]
16. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments. Yang AS; Honig B J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778 [TBL] [Abstract][Full Text] [Related]
17. A new algorithm for the alignment of multiple protein structures using Monte Carlo optimization. Guda C; Scheeff ED; Bourne PE; Shindyalov IN Pac Symp Biocomput; 2001; ():275-86. PubMed ID: 11262947 [TBL] [Abstract][Full Text] [Related]
18. Dynamic programming algorithms for biological sequence comparison. Pearson WR; Miller W Methods Enzymol; 1992; 210():575-601. PubMed ID: 1584052 [TBL] [Abstract][Full Text] [Related]
19. Accuracy of structure-based sequence alignment of automatic methods. Kim C; Lee B BMC Bioinformatics; 2007 Sep; 8():355. PubMed ID: 17883866 [TBL] [Abstract][Full Text] [Related]
20. Protein structure mining using a structural alphabet. Tyagi M; de Brevern AG; Srinivasan N; Offmann B Proteins; 2008 May; 71(2):920-37. PubMed ID: 18004784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]