BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9283966)

  • 1. Fracture toughness of CoCr alloy-PMMA cement interface.
    Mann KA; Edidin AA; Ordway NR; Manley MT
    J Biomed Mater Res; 1997; 38(3):211-9. PubMed ID: 9283966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed-mode fracture toughness of the cobalt-chromium alloy/polymethylmethacrylate cement interface.
    Mann KA; Bhashyam S
    J Orthop Res; 1999 May; 17(3):321-8. PubMed ID: 10376719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue fracture of the stem-cement interface with a clamped cantilever beam test.
    Heuer DA; Mann KA
    J Biomech Eng; 2000 Dec; 122(6):647-51. PubMed ID: 11192387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mixed mode fracture characterization of hydroxylapatite-titanium alloy interface.
    Mann KA; Edidin AA; Kinoshita RK; Manley MT
    J Appl Biomater; 1994; 5(4):285-91. PubMed ID: 8580535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness.
    Walsh WR; Svehla MJ; Russell J; Saito M; Nakashima T; Gillies RM; Bruce W; Hori R
    Biomaterials; 2004 Sep; 25(20):4929-34. PubMed ID: 15109853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of BaSO4 on the fatigue crack propagation rate of PMMA bone cement.
    Molino LN; Topoleski LD
    J Biomed Mater Res; 1996 May; 31(1):131-7. PubMed ID: 8731157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fracture toughness of titanium-cement interfaces: effects of fibers and loading angles.
    Khandaker M; Utsaha KC; Morris T
    Int J Nanomedicine; 2014; 9():1689-97. PubMed ID: 24729704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osseointegration of surface-blasted implants made of titanium alloy and cobalt-chromium alloy in a rabbit intramedullary model.
    Jinno T; Goldberg VM; Davy D; Stevenson S
    J Biomed Mater Res; 1998 Oct; 42(1):20-9. PubMed ID: 9740003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue model to characterize cement-metal interface in dynamic shear.
    Chen PC; Pinto JG; Mead EH; D'Lima DD; Colwell CW
    Clin Orthop Relat Res; 1998 May; (350):229-36. PubMed ID: 9602824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of endothelial and smooth muscle cells with cobalt-chromium alloy surfaces coated with paclitaxel deposited self-assembled monolayers.
    Lamichhane S; Lancaster S; Thiruppathi E; Mani G
    Langmuir; 2013 Nov; 29(46):14254-64. PubMed ID: 24156365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random damage and characteristics of debris particles are two important and yet ignored factors in the mechanical integrity of the stem-cement interface of a total hip replacement: influence of the surface finish of the metal stem.
    Qi G; Wayne SF; Mann KA; Zhang B; Lewis G
    J Mater Sci Mater Med; 2010 Apr; 21(4):1385-92. PubMed ID: 19946736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material.
    Sweeney CA; O'Brien B; Dunne FP; McHugh PE; Leen SB
    J Mech Behav Biomed Mater; 2015 Jun; 46():244-60. PubMed ID: 25817609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of CoCr alloy using varying concentrations of phosphoric and phosphonoacetic acids: albumin and fibrinogen adsorption, platelet adhesion, activation, and aggregation studies.
    Thiruppathi E; Larson MK; Mani G
    Langmuir; 2015; 31(1):358-70. PubMed ID: 25495665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal release in patients who have had a primary total hip arthroplasty. A prospective, controlled, longitudinal study.
    Jacobs JJ; Skipor AK; Patterson LM; Hallab NJ; Paprosky WG; Black J; Galante JO
    J Bone Joint Surg Am; 1998 Oct; 80(10):1447-58. PubMed ID: 9801213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elemental release from CoCr and NiCr alloys containing palladium.
    Beck KA; Sarantopoulos DM; Kawashima I; Berzins DW
    J Prosthodont; 2012 Feb; 21(2):88-93. PubMed ID: 22380645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early fixation of cobalt-chromium based alloy surgical implants to bone using a tissue-engineering approach.
    Ogawa M; Tohma Y; Ohgushi H; Takakura Y; Tanaka Y
    Int J Mol Sci; 2012; 13(5):5528-5541. PubMed ID: 22754313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyisobutylene-toughened poly(methyl methacrylate): III. PMMA-l-PIB networks as bone cements.
    Kennedy JP; Askew MJ; Richard GC
    J Biomater Sci Polym Ed; 1993; 4(5):445-9. PubMed ID: 8241061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma nitriding of titanium alloy: Effect of roughness, hardness, biocompatibility, and bonding with bone cement.
    Khandaker M; Riahinezhad S; Li Y; Vaughan MB; Sultana F; Morris TL; Phinney L; Hossain K
    Biomed Mater Eng; 2016 Nov; 27(5):461-474. PubMed ID: 27885994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel alloy for speciality needle applications.
    Keehan E; Cavanagh C; Gergely V
    Med Device Technol; 2009; 20(2):23-4, 26-7. PubMed ID: 19405339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.