These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 9284096)
1. Increased sensitivity to peroxidative agents as a possible pathogenic factor of melanocyte damage in vitiligo. Maresca V; Roccella M; Roccella F; Camera E; Del Porto G; Passi S; Grammatico P; Picardo M J Invest Dermatol; 1997 Sep; 109(3):310-3. PubMed ID: 9284096 [TBL] [Abstract][Full Text] [Related]
2. Increased sensitivity to peroxidizing agents is correlated with an imbalance of antioxidants in normal melanocytes from melanoma patients. Grammatico P; Maresca V; Roccella F; Roccella M; Biondo L; CatricalĂ C; Picardo M Exp Dermatol; 1998 Aug; 7(4):205-12. PubMed ID: 9758419 [TBL] [Abstract][Full Text] [Related]
3. Membrane lipid alterations as a possible basis for melanocyte degeneration in vitiligo. Dell'Anna ML; Ottaviani M; Albanesi V; Vidolin AP; Leone G; Ferraro C; Cossarizza A; Rossi L; Picardo M J Invest Dermatol; 2007 May; 127(5):1226-33. PubMed ID: 17235326 [TBL] [Abstract][Full Text] [Related]
4. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone. Arowojolu OA; Orlow SJ; Elbuluk N; Manga P Exp Dermatol; 2017 Jul; 26(7):637-644. PubMed ID: 28370349 [TBL] [Abstract][Full Text] [Related]
5. Short- and long-term effects of acetylsalicylic acid treatment on the proliferation and lipid peroxidation of skin cultured melanocytes of active vitiligo. Zailaie MZ Saudi Med J; 2004 Nov; 25(11):1656-63. PubMed ID: 15573197 [TBL] [Abstract][Full Text] [Related]
6. Protective effects of glutamine on human melanocyte oxidative stress model. Jiang L; Guo Z; Kong Y; Liang J; Wang Y; Wang K Indian J Dermatol Venereol Leprol; 2018; 84(3):269-274. PubMed ID: 29491190 [TBL] [Abstract][Full Text] [Related]
7. Dysregulated autophagy increased melanocyte sensitivity to H He Y; Li S; Zhang W; Dai W; Cui T; Wang G; Gao T; Li C Sci Rep; 2017 Feb; 7():42394. PubMed ID: 28186139 [TBL] [Abstract][Full Text] [Related]
8. Successful culture of adult human melanocytes obtained from normal and vitiligo donors. Medrano EE; Nordlund JJ J Invest Dermatol; 1990 Oct; 95(4):441-5. PubMed ID: 1698887 [TBL] [Abstract][Full Text] [Related]
9. Imbalance in the antioxidant pool in melanoma cells and normal melanocytes from patients with melanoma. Picardo M; Grammatico P; Roccella F; Roccella M; Grandinetti M; Del Porto G; Passi S J Invest Dermatol; 1996 Sep; 107(3):322-6. PubMed ID: 8751964 [TBL] [Abstract][Full Text] [Related]
10. Comparison of oxidant-antioxidant status in patients with vitiligo and healthy population. Agrawal S; Kumar A; Dhali TK; Majhi SK Kathmandu Univ Med J (KUMJ); 2014; 12(46):132-6. PubMed ID: 25552219 [TBL] [Abstract][Full Text] [Related]
11. Bilobalide protection of normal human melanocytes from hydrogen peroxide-induced oxidative damage via promotion of antioxidase expression and inhibition of endoplasmic reticulum stress. Lu L; Wang S; Fu L; Liu D; Zhu Y; Xu A Clin Exp Dermatol; 2016 Jan; 41(1):64-73. PubMed ID: 26178968 [TBL] [Abstract][Full Text] [Related]
13. Date seed oil inhibits hydrogen peroxide-induced oxidative stress in normal human epidermal melanocytes. Dammak I; Boudaya S; Abdallah FB; Hamida T; Attia H Connect Tissue Res; 2009; 50(5):330-5. PubMed ID: 19863392 [TBL] [Abstract][Full Text] [Related]
14. Premature avian melanocyte death due to low antioxidant levels of protection: fowl model for vitiligo. Bowers RR; Lujan J; Biboso A; Kridel S; Varkey C Pigment Cell Res; 1994 Dec; 7(6):409-18. PubMed ID: 7761349 [TBL] [Abstract][Full Text] [Related]
15. SIRT3-Dependent Mitochondrial Dynamics Remodeling Contributes to Oxidative Stress-Induced Melanocyte Degeneration in Vitiligo. Yi X; Guo W; Shi Q; Yang Y; Zhang W; Chen X; Kang P; Chen J; Cui T; Ma J; Wang H; Guo S; Chang Y; Liu L; Jian Z; Wang L; Xiao Q; Li S; Gao T; Li C Theranostics; 2019; 9(6):1614-1633. PubMed ID: 31037127 [TBL] [Abstract][Full Text] [Related]
16. Glutathione prevented dopamine-induced apoptosis of melanocytes and its signaling. Park ES; Kim SY; Na JI; Ryu HS; Youn SW; Kim DS; Yun HY; Park KC J Dermatol Sci; 2007 Aug; 47(2):141-9. PubMed ID: 17481858 [TBL] [Abstract][Full Text] [Related]
17. A role for tyrosinase-related protein 1 in 4-tert-butylphenol-induced toxicity in melanocytes: Implications for vitiligo. Manga P; Sheyn D; Yang F; Sarangarajan R; Boissy RE Am J Pathol; 2006 Nov; 169(5):1652-62. PubMed ID: 17071589 [TBL] [Abstract][Full Text] [Related]
18. Melanocytes are not absent in lesional skin of long duration vitiligo. Tobin DJ; Swanson NN; Pittelkow MR; Peters EM; Schallreuter KU J Pathol; 2000 Aug; 191(4):407-16. PubMed ID: 10918216 [TBL] [Abstract][Full Text] [Related]
19. Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Jimbow K; Chen H; Park JS; Thomas PD Br J Dermatol; 2001 Jan; 144(1):55-65. PubMed ID: 11167683 [TBL] [Abstract][Full Text] [Related]
20. Involvement of superoxide dismutase isoenzymes and their genetic variants in progression of and higher susceptibility to vitiligo. Laddha NC; Dwivedi M; Gani AR; Shajil EM; Begum R Free Radic Biol Med; 2013 Dec; 65():1110-1125. PubMed ID: 24036105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]