These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 9284306)

  • 1. Control of phobic behavioral responses by rhodopsin-induced photocurrents in Chlamydomonas.
    Holland EM; Harz H; Uhl R; Hegemann P
    Biophys J; 1997 Sep; 73(3):1395-401. PubMed ID: 9284306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vision in microalgae.
    Hegemann P
    Planta; 1997; 203(3):265-74. PubMed ID: 9431675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photophobic responses and phototaxis in Chlamydomonas are triggered by a single rhodopsin photoreceptor.
    Kröger P; Hegemann P
    FEBS Lett; 1994 Mar; 341(1):5-9. PubMed ID: 8137921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nature of rhodopsin-triggered photocurrents in Chlamydomonas. II. Influence of monovalent ions.
    Nonnengässer C; Holland EM; Harz H; Hegemann P
    Biophys J; 1996 Feb; 70(2):932-8. PubMed ID: 8789110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nature of rhodopsin-triggered photocurrents in Chlamydomonas. I. Kinetics and influence of divalent ions.
    Holland EM; Braun FJ; Nonnengässer C; Harz H; Hegemann P
    Biophys J; 1996 Feb; 70(2):924-31. PubMed ID: 8789109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas.
    Foster KW; Saranak J; Patel N; Zarilli G; Okabe M; Kline T; Nakanishi K
    Nature; 1984 Oct 25-31; 311(5988):756-9. PubMed ID: 6493336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Phototaxis of the green algae: the new class of rhodopsin receptors].
    Govorunova EG; Jung KH; Sineshchekov OA
    Biofizika; 2004; 49(2):278-93. PubMed ID: 15129628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of force generation during flagellar assembly through optical trapping of free-swimming Chlamydomonas reinhardtii.
    McCord RP; Yukich JN; Bernd KK
    Cell Motil Cytoskeleton; 2005 Jul; 61(3):137-44. PubMed ID: 15887297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Chlamydomonas voltage-gated calcium channel and its interaction with photoreceptor support VGCC modulated photobehavioral response in the green alga.
    Sanyal SK; Awasthi M; Ranjan P; Sharma S; Pandey GK; Kateriya S
    Int J Biol Macromol; 2023 Aug; 245():125492. PubMed ID: 37343610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrinsic difference in beat frequency between the two flagella of Chlamydomonas reinhardtii.
    Kamiya R; Hasegawa E
    Exp Cell Res; 1987 Nov; 173(1):299-304. PubMed ID: 3678383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Chlamydomonas keeps track of the light once it has reached the right phototactic orientation.
    Schaller K; David R; Uhl R
    Biophys J; 1997 Sep; 73(3):1562-72. PubMed ID: 9284323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bending patterns of Chlamydomonas flagella: II. Calcium effects on reactivated Chlamydomonas flagella.
    Omoto CK; Brokaw CJ
    Cell Motil; 1985; 5(1):53-60. PubMed ID: 3978704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientation of the central pair complex during flagellar bend formation in Chlamydomonas.
    Mitchell DR
    Cell Motil Cytoskeleton; 2003 Oct; 56(2):120-9. PubMed ID: 14506709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii.
    Pazour GJ; Sineshchekov OA; Witman GB
    J Cell Biol; 1995 Oct; 131(2):427-40. PubMed ID: 7593169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of novel Chlamydomonas mutants that display phototaxis but not photophobic response.
    Matsuda A; Yoshimura K; Sineshchekov OA; Hirono M; Kamiya R
    Cell Motil Cytoskeleton; 1998; 41(4):353-62. PubMed ID: 9858159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phototactic activity in Chlamydomonas 'non-phototactic' mutants deficient in Ca2+-dependent control of flagellar dominance or in inner-arm dynein.
    Okita N; Isogai N; Hirono M; Kamiya R; Yoshimura K
    J Cell Sci; 2005 Feb; 118(Pt 3):529-37. PubMed ID: 15657081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A steering mechanism for phototaxis in Chlamydomonas.
    Bennett RR; Golestanian R
    J R Soc Interface; 2015 Mar; 12(104):20141164. PubMed ID: 25589576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga.
    Geyer VF; Jülicher F; Howard J; Friedrich BM
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):18058-63. PubMed ID: 24145440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of beating mode in Chlamydomonas flagella induced by electric stimulation.
    Yoshimura K; Shingyoji C; Takahashi K
    Cell Motil Cytoskeleton; 1997; 36(3):236-45. PubMed ID: 9067619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of flagellar motion in Chlamydomonas and Euglena by mechanical microinjection of Mg2+ and Ca2+ and by electric current injection.
    Nichols KM; Rikmenspoel R
    J Cell Sci; 1978 Feb; 29():233-47. PubMed ID: 415066
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.