These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 9284319)
1. Assessment of intra-SR free [Ca] and buffering in rat heart. Shannon TR; Bers DM Biophys J; 1997 Sep; 73(3):1524-31. PubMed ID: 9284319 [TBL] [Abstract][Full Text] [Related]
2. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Berlin JR; Bassani JW; Bers DM Biophys J; 1994 Oct; 67(4):1775-87. PubMed ID: 7819510 [TBL] [Abstract][Full Text] [Related]
3. Reverse mode of the sarcoplasmic reticulum calcium pump and load-dependent cytosolic calcium decline in voltage-clamped cardiac ventricular myocytes. Shannon TR; Ginsburg KS; Bers DM Biophys J; 2000 Jan; 78(1):322-33. PubMed ID: 10620296 [TBL] [Abstract][Full Text] [Related]
4. Control of maximum sarcoplasmic reticulum Ca load in intact ferret ventricular myocytes. Effects Of thapsigargin and isoproterenol. Ginsburg KS; Weber CR; Bers DM J Gen Physiol; 1998 Apr; 111(4):491-504. PubMed ID: 9524134 [TBL] [Abstract][Full Text] [Related]
5. Functional coupling between sarcoplasmic reticulum and Na/Ca exchange in single myocytes of guinea-pig and rat heart. Janiak R; Lewartowski B; Langer GA J Mol Cell Cardiol; 1996 Feb; 28(2):253-64. PubMed ID: 8729058 [TBL] [Abstract][Full Text] [Related]
6. Energetic state is a strong regulator of sarcoplasmic reticulum Ca2+ loss in cardiac muscle: different efficiencies of different energy sources. Kuum M; Kaasik A; Joubert F; Ventura-Clapier R; Veksler V Cardiovasc Res; 2009 Jul; 83(1):89-96. PubMed ID: 19389722 [TBL] [Abstract][Full Text] [Related]
7. Modification of sarcoplasmic reticulum (SR) Ca2+ release by FK506 induces defective excitation-contraction coupling only when SR Ca2+ recycling is disturbed. Yoshihara S; Satoh H; Saotome M; Katoh H; Terada H; Watanabe H; Hayashi H Can J Physiol Pharmacol; 2005 Apr; 83(4):357-66. PubMed ID: 15877110 [TBL] [Abstract][Full Text] [Related]
8. Reduced sarcoplasmic reticulum Ca(2+)-uptake and expression of phospholamban in left ventricular myocardium of dogs with heart failure. Gupta RC; Mishra S; Mishima T; Goldstein S; Sabbah HN J Mol Cell Cardiol; 1999 Jul; 31(7):1381-9. PubMed ID: 10403755 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the kinetic effects of phospholamban phosphorylation and anti-phospholamban monoclonal antibody on the calcium pump in purified cardiac sarcoplasmic reticulum membranes. Antipenko AY; Spielman AI; Sassaroli M; Kirchberger MA Biochemistry; 1997 Oct; 36(42):12903-10. PubMed ID: 9335549 [TBL] [Abstract][Full Text] [Related]
10. Passive Ca buffering and SR Ca uptake in permeabilized rabbit ventricular myocytes. Hove-Madsen L; Bers DM Am J Physiol; 1993 Mar; 264(3 Pt 1):C677-86. PubMed ID: 7681625 [TBL] [Abstract][Full Text] [Related]
11. The role of sarcoplasmic reticulum and Na-Ca exchange in the Ca2+ extrusion from the resting myocytes of guinea-pig heart: comparison with rat. Wolska BM; Lewartowski B J Mol Cell Cardiol; 1993 Jan; 25(1):75-91. PubMed ID: 8441183 [TBL] [Abstract][Full Text] [Related]
12. Loading of calcium and strontium into the sarcoplasmic reticulum in rat ventricular muscle. Spencer CI; Barsotti RJ; Berlin JR J Mol Cell Cardiol; 2000 Jul; 32(7):1285-300. PubMed ID: 10860770 [TBL] [Abstract][Full Text] [Related]
13. Phospholamban decreases the energetic efficiency of the sarcoplasmic reticulum Ca pump. Shannon TR; Chu G; Kranias EG; Bers DM J Biol Chem; 2001 Mar; 276(10):7195-201. PubMed ID: 11087739 [TBL] [Abstract][Full Text] [Related]
14. Calcium pool size modulates the sensitivity of the ryanodine receptor channel and calcium-dependent ATPase of heavy sarcoplasmic reticulum to extravesicular free calcium concentration. Marie V; Silva JE J Cell Physiol; 1998 Jun; 175(3):283-94. PubMed ID: 9572473 [TBL] [Abstract][Full Text] [Related]
15. Role of regucalcin as an activator of sarcoplasmic reticulum Ca2+-ATPase activity in rat heart muscle. Yamaguchi M; Nakajima R J Cell Biochem; 2002; 86(1):184-93. PubMed ID: 12112029 [TBL] [Abstract][Full Text] [Related]
16. Undirectional calcium and nucleotide fluxes in cardiac sarcoplasmic reticulum. II. Experimental results. Feher JJ; Briggs FN Biophys J; 1984 Jun; 45(6):1135-44. PubMed ID: 6234947 [TBL] [Abstract][Full Text] [Related]
18. High-mobility group box 1 (HMGB1) impaired cardiac excitation-contraction coupling by enhancing the sarcoplasmic reticulum (SR) Ca(2+) leak through TLR4-ROS signaling in cardiomyocytes. Zhang C; Mo M; Ding W; Liu W; Yan D; Deng J; Luo X; Liu J J Mol Cell Cardiol; 2014 Sep; 74():260-73. PubMed ID: 24937603 [TBL] [Abstract][Full Text] [Related]
19. Analysis of sarcoplasmic reticulum Ca2+ transport and Ca2+ ATPase enzymatic properties using mouse cardiac tissue homogenates. Ji Y; Loukianov E; Periasamy M Anal Biochem; 1999 May; 269(2):236-44. PubMed ID: 10221995 [TBL] [Abstract][Full Text] [Related]