These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 9284324)

  • 1. A microspectrophotometric study of the shielding properties of eyespot and cell body in Chlamydomonas.
    Schaller K; Uhl R
    Biophys J; 1997 Sep; 73(3):1573-8. PubMed ID: 9284324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii.
    Ueki N; Ide T; Mochiji S; Kobayashi Y; Tokutsu R; Ohnishi N; Yamaguchi K; Shigenobu S; Tanaka K; Minagawa J; Hisabori T; Hirono M; Wakabayashi K
    Proc Natl Acad Sci U S A; 2016 May; 113(19):5299-304. PubMed ID: 27122315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional analysis of the eyespot in Chlamydomonas reinhardtii mutant ey 627, mt (-).
    Kreimer G; Overländer C; Sineshchekov OA; Stolzis H; Nultsch W; Melkonian M
    Planta; 1992 Nov; 188(4):513-21. PubMed ID: 24178383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The eyespot of Chlamydomonas reinhardtii: a comparative microspectrophotometric study.
    Crescitelli F; James TW; Erickson JM; Loew ER; McFarland WN
    Vision Res; 1992 Sep; 32(9):1593-600. PubMed ID: 1455731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reflective properties of different eyespot types in dinoflagellates.
    Kreimer G
    Protist; 1999 Oct; 150(3):311-23. PubMed ID: 10575703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subfractionation of eyespot apparatuses from the green alga Spermatozopsis similis: isolation and characterization of eyespot globules.
    Renninger S; Backendorf E; Kreimer G
    Planta; 2001 May; 213(1):51-63. PubMed ID: 11523656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The eyespot of Euglena gracilis: a microspectrophotometric study.
    James TW; Crescitelli F; Loew ER; McFarland WN
    Vision Res; 1992 Sep; 32(9):1583-91. PubMed ID: 1455730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eyespot placement and assembly in the green alga Chlamydomonas.
    Dieckmann CL
    Bioessays; 2003 Apr; 25(4):410-6. PubMed ID: 12655648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photophobic responses and phototaxis in Chlamydomonas are triggered by a single rhodopsin photoreceptor.
    Kröger P; Hegemann P
    FEBS Lett; 1994 Mar; 341(1):5-9. PubMed ID: 8137921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Chlamydomonas keeps track of the light once it has reached the right phototactic orientation.
    Schaller K; David R; Uhl R
    Biophys J; 1997 Sep; 73(3):1562-72. PubMed ID: 9284323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and partial characterization of the photoreceptive organelle for phototaxis of a flagellate green alga.
    Kreimer G; Brohsonn U; Melkonian M
    Eur J Cell Biol; 1991 Aug; 55(2):318-27. PubMed ID: 1935995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The nature of rhodopsin-triggered photocurrents in Chlamydomonas. I. Kinetics and influence of divalent ions.
    Holland EM; Braun FJ; Nonnengässer C; Harz H; Hegemann P
    Biophys J; 1996 Feb; 70(2):924-31. PubMed ID: 8789109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carotenoids in the eyespot apparatus are required for triggering phototaxis in Euglena gracilis.
    Kato S; Ozasa K; Maeda M; Tanno Y; Tamaki S; Higuchi-Takeuchi M; Numata K; Kodama Y; Sato M; Toyooka K; Shinomura T
    Plant J; 2020 Mar; 101(5):1091-1102. PubMed ID: 31630463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Development of ultrastructure and experimental change in carotene composition of the eyespot in chlamydomonas reinhardtii mutants].
    Biofizika; 2013; 58(6):1005-12. PubMed ID: 25486758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A steering mechanism for phototaxis in Chlamydomonas.
    Bennett RR; Golestanian R
    J R Soc Interface; 2015 Mar; 12(104):20141164. PubMed ID: 25589576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The sensitivity of chlamydomonas photoreceptor is optimized for the frequency of cell body rotation.
    Yoshimura K; Kamiya R
    Plant Cell Physiol; 2001 Jun; 42(6):665-72. PubMed ID: 11427687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The functional similarity of vertebrate rhodopsin and of a photosensitive pigment from the unicellular flagellate alga Chlamydomonas reinhardtii].
    Korol'kov SN; Garnovskaia MN; Basov AS; Dumler IL
    Zh Evol Biokhim Fiziol; 1989; 25(6):777-80. PubMed ID: 2560308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gain setting in Chlamydomonas reinhardtii: mechanism of phototaxis and the role of the photophobic response.
    Zacks DN; Spudich JL
    Cell Motil Cytoskeleton; 1994; 29(3):225-30. PubMed ID: 7895286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarizing microscopy of eyespot of Chlamydomonas: in situ observation of its location, orientation, and multiplication.
    Yang SY; Tsuboi M
    Biospectroscopy; 1999; 5(2):93-100. PubMed ID: 10217328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of phobic behavioral responses by rhodopsin-induced photocurrents in Chlamydomonas.
    Holland EM; Harz H; Uhl R; Hegemann P
    Biophys J; 1997 Sep; 73(3):1395-401. PubMed ID: 9284306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.