These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9284341)

  • 1. Quantitative analysis of converging spinal and cuneate mossy fibre afferent projections to the rat cerebellar anterior lobe.
    Alisky JM; Tolbert DL
    Neuroscience; 1997 Sep; 80(2):373-88. PubMed ID: 9284341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of cuneocerebellar projections in rats: differential topography in the anterior and posterior lobes.
    Tolbert DL; Gutting JC
    Neuroscience; 1997 Sep; 80(2):359-71. PubMed ID: 9284340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower thoracic upper lumbar spinocerebellar projections in rats: a complex topography revealed in computer reconstructions of the unfolded anterior lobe.
    Tolbert DL; Alisky JM; Clark BR
    Neuroscience; 1993 Aug; 55(3):755-74. PubMed ID: 7692349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections.
    Ji Z; Hawkes R
    Neuroscience; 1994 Aug; 61(4):935-54. PubMed ID: 7530818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of vesicular glutamate transporters by vagal afferent terminals in rat nucleus of the solitary tract: projections from the heart preferentially express vesicular glutamate transporter 1.
    Corbett EK; Sinfield JK; McWilliam PN; Deuchars J; Batten TF
    Neuroscience; 2005; 135(1):133-45. PubMed ID: 16084661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistence of spinocerebellar afferent topography following hereditary Purkinje cell degeneration.
    Tolbert DL; Knight TL
    Cerebellum; 2003; 2(1):31-8. PubMed ID: 12882232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Labeling of central projections of primary afferents in adult rats: a comparison between biotinylated dextran amine, neurobiotin and Phaseolus vulgaris-leucoagglutinin.
    Novikov LN
    J Neurosci Methods; 2001 Dec; 112(2):145-54. PubMed ID: 11716949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing mossy fiber terminal fields in the rat cerebellar cortex may segregate because of Purkinje cell compartmentation and not competition.
    Ji Z; Hawkes R
    J Comp Neurol; 1995 Aug; 359(2):197-212. PubMed ID: 7499524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential labeling of converging afferent pathways using biotinylated dextran amine and cholera toxin subunit B.
    Alisky JM; Tolbert DL
    J Neurosci Methods; 1994 Jun; 52(2):143-8. PubMed ID: 7526082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinocerebellar projections in the pigeon with special reference to the neck region of the body.
    Necker R
    J Comp Neurol; 2001 Jan; 429(3):403-18. PubMed ID: 11116228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomical evidence for somatotopic maps in the zona incerta of rats.
    Shaw V; Mitrofanis J
    Anat Embryol (Berl); 2002 Dec; 206(1-2):119-30. PubMed ID: 12478373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single axonal morphology and termination to cerebellar aldolase C stripes characterize distinct spinocerebellar projection systems originating from the thoracic spinal cord in the mouse.
    Luo Y; Patel RP; Sarpong GA; Sasamura K; Sugihara I
    J Comp Neurol; 2018 Mar; 526(4):681-706. PubMed ID: 29159952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei.
    Wu HS; Sugihara I; Shinoda Y
    J Comp Neurol; 1999 Aug; 411(1):97-118. PubMed ID: 10404110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. External cuneocerebellar projection and Purkinje cell zebrin II bands: a direct comparison of parasagittal banding in the mouse cerebellum.
    Akintunde A; Eisenman LM
    J Chem Neuroanat; 1994 Jul; 7(1-2):75-86. PubMed ID: 7802972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones.
    Pijpers A; Apps R; Pardoe J; Voogd J; Ruigrok TJ
    J Neurosci; 2006 Nov; 26(46):12067-80. PubMed ID: 17108180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anatomical evidence for an anticonvulsant relay in the rat ventromedial medulla.
    Shehab S; McGonigle D; Hughes DI; Todd AJ; Redgrave P
    Eur J Neurosci; 2005 Sep; 22(6):1431-44. PubMed ID: 16190897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topographic relationship between sagittal Purkinje cell bands revealed by a monoclonal antibody to zebrin I and spinocerebellar projections arising from the central cervical nucleus in the rat.
    Matsushita M; Ragnarson B; Grant G
    Exp Brain Res; 1991; 84(1):133-41. PubMed ID: 1713168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The terminal distribution pattern of spinocerebellar fibers. An anterograde labelling study in the posthatching chick.
    Okado N; Ito R; Homma S
    Anat Embryol (Berl); 1987; 176(2):175-82. PubMed ID: 2441627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Somatotopic nucleocortical projections to the multiple somatosensory cerebellar maps.
    Provini L; Marcotti W; Morara S; Rosina A
    Neuroscience; 1998 Apr; 83(4):1085-104. PubMed ID: 9502248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The projection of spinocerebellar neurons from the sacrococcygeal region of the spinal cord in the cat. An experimental study using anterograde transport of WGA-HRP and degeneration.
    Xu Q; Grant G
    Arch Ital Biol; 1990 Jul; 128(2-4):209-28. PubMed ID: 1702608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.