These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 9285335)

  • 1. Inertial loading of the human cervical spine.
    Yoganandan N; Pintar FA
    J Biomech Eng; 1997 Aug; 119(3):237-40. PubMed ID: 9285335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of the head-neck complex in low-speed rear impact.
    Stemper BD; Yoganandan N; Pintar FA
    Biomed Sci Instrum; 2003; 39():245-50. PubMed ID: 12724902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forces and moments in cervical spinal column segments in frontal impacts using finite element modeling and human cadaver tests.
    Meyer F; Humm J; Purushothaman Y; Willinger R; Pintar FA; Yoganandan N
    J Mech Behav Biomed Mater; 2019 Feb; 90():681-688. PubMed ID: 30529569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cervical vertebral motions and biomechanical responses to direct loading of human head.
    Ono K; Kaneoka K; Hattori S; Ujihashi S; Takhounts EG; Haffner MP; Eppinger RH
    Traffic Inj Prev; 2003 Jun; 4(2):141-52. PubMed ID: 16210199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation.
    Barrey C; Rousseau MA; Persohn S; Campana S; Perrin G; Skalli W
    Eur J Orthop Surg Traumatol; 2015 Jul; 25 Suppl 1():S155-65. PubMed ID: 25845316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strength of the cervical spine in compression and bending.
    Przybyla AS; Skrzypiec D; Pollintine P; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2007 Jul; 32(15):1612-20. PubMed ID: 17621208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The facet joint loading profile of a cervical intervertebral disc replacement incorporating a novel saddle-shaped articulation.
    Stieber JR; Quirno M; Kang M; Valdevit A; Errico TJ
    J Spinal Disord Tech; 2011 Oct; 24(7):432-6. PubMed ID: 21336178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of age and injury mechanism on cervical spine injury tolerance from head contact loading.
    Yoganandan N; Chirvi S; Voo L; Pintar FA; Banerjee A
    Traffic Inj Prev; 2018 Feb; 19(2):165-172. PubMed ID: 28738168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strength and kinematic response of dynamic cervical spine injuries.
    Yoganandan N; Pintar FA; Sances A; Reinartz J; Larson SJ
    Spine (Phila Pa 1976); 1991 Oct; 16(10 Suppl):S511-7. PubMed ID: 1801263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intervertebral rotations as a function of rear impact loading.
    Stemper BD; Yoganandan N; Pintar FA
    Biomed Sci Instrum; 2002; 38():227-31. PubMed ID: 12085607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of in vivo lower cervical spinal loading using musculoskeletal multi-body dynamics model during the head flexion/extension, lateral bending and axial rotation.
    Diao H; Xin H; Jin Z
    Proc Inst Mech Eng H; 2018 Nov; 232(11):1071-1082. PubMed ID: 30223718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cervical spine injury biomechanics: Applications for under body blast loadings in military environments.
    Yoganandan N; Stemper BD; Pintar FA; Maiman DJ; McEntire BJ; Chancey VC
    Clin Biomech (Bristol); 2013 Jul; 28(6):602-9. PubMed ID: 23796847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical comparison of single- and two-level cervical arthroplasty versus arthrodesis: effect on adjacent-level spinal kinematics.
    Cunningham BW; Hu N; Zorn CM; McAfee PC
    Spine J; 2010 Apr; 10(4):341-9. PubMed ID: 20362252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine.
    Wheeldon JA; Pintar FA; Knowles S; Yoganandan N
    J Biomech; 2006; 39(2):375-80. PubMed ID: 16321642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new acceleration apparatus for the study of whiplash with human cadaveric cervical spine specimens.
    Kettler A; Schmitt H; Simon U; Hartwig E; Kinzl L; Claes L; Wilke HJ
    J Biomech; 2004 Oct; 37(10):1607-13. PubMed ID: 15336936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of two-level total disc replacement on cervical spine kinematics.
    Phillips FM; Tzermiadianos MN; Voronov LI; Havey RM; Carandang G; Dooris A; Patwardhan AG
    Spine (Phila Pa 1976); 2009 Oct; 34(22):E794-9. PubMed ID: 19829242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of morphological variations on cervical spine segmental responses from inertial loading.
    John JD; Yoganandan N; Arun MWJ; Saravana Kumar G
    Traffic Inj Prev; 2018 Feb; 19(sup1):S29-S36. PubMed ID: 29584503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of novel angled cervical disc replacement on facet joint stress].
    Bai C; Zhang W; Ling W; Tian Z; Dang X; Wang K
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Apr; 26(4):390-5. PubMed ID: 22568314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of extension kinematic corridors to validate a head/neck finite element model.
    Stemper BD; Yoganandan N; Pintar FA; Sun Z
    Biomed Sci Instrum; 2001; 37():239-44. PubMed ID: 11347395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of varying compressive loading methods on physiologic motion patterns in the cervical spine.
    Bell KM; Yan Y; Debski RE; Sowa GA; Kang JD; Tashman S
    J Biomech; 2016 Jan; 49(2):167-72. PubMed ID: 26708967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.