These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 9285816)

  • 21. Cdc34 and the F-box protein Met30 are required for degradation of the Cdk-inhibitory kinase Swe1.
    Kaiser P; Sia RA; Bardes EG; Lew DJ; Reed SI
    Genes Dev; 1998 Aug; 12(16):2587-97. PubMed ID: 9716410
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cdc34 C-terminal tail phosphorylation regulates Skp1/cullin/F-box (SCF)-mediated ubiquitination and cell cycle progression.
    Sadowski M; Mawson A; Baker R; Sarcevic B
    Biochem J; 2007 Aug; 405(3):569-81. PubMed ID: 17461777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Association of human CUL-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45(SKP2): evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway.
    Lisztwan J; Marti A; Sutterlüty H; Gstaiger M; Wirbelauer C; Krek W
    EMBO J; 1998 Jan; 17(2):368-83. PubMed ID: 9430629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclin-dependent kinase and Cks/Suc1 interact with the proteasome in yeast to control proteolysis of M-phase targets.
    Kaiser P; Moncollin V; Clarke DJ; Watson MH; Bertolaet BL; Reed SI; Bailly E
    Genes Dev; 1999 May; 13(9):1190-202. PubMed ID: 10323869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorylation of sic1, a cyclin-dependent kinase (Cdk) inhibitor, by Cdk including Pho85 kinase is required for its prompt degradation.
    Nishizawa M; Kawasumi M; Fujino M; Toh-e A
    Mol Biol Cell; 1998 Sep; 9(9):2393-405. PubMed ID: 9725902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kip1 degradation via the ubiquitin-proteasome pathway.
    Tam SW; Theodoras AM; Pagano M
    Leukemia; 1997 Apr; 11 Suppl 3():363-6. PubMed ID: 9209391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How proteolysis drives the cell cycle.
    King RW; Deshaies RJ; Peters JM; Kirschner MW
    Science; 1996 Dec; 274(5293):1652-9. PubMed ID: 8939846
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast.
    Bailly E; Reed SI
    Mol Cell Biol; 1999 Oct; 19(10):6872-90. PubMed ID: 10490625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New insight into the role of the Cdc34 ubiquitin-conjugating enzyme in cell cycle regulation via Ace2 and Sic1.
    Cocklin R; Heyen J; Larry T; Tyers M; Goebl M
    Genetics; 2011 Mar; 187(3):701-15. PubMed ID: 21196523
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34.
    Petroski MD; Deshaies RJ
    Cell; 2005 Dec; 123(6):1107-20. PubMed ID: 16360039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box.
    Bai C; Sen P; Hofmann K; Ma L; Goebl M; Harper JW; Elledge SJ
    Cell; 1996 Jul; 86(2):263-74. PubMed ID: 8706131
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphorylation controls timing of Cdc6p destruction: A biochemical analysis.
    Elsasser S; Chi Y; Yang P; Campbell JL
    Mol Biol Cell; 1999 Oct; 10(10):3263-77. PubMed ID: 10512865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14.
    Jaspersen SL; Charles JF; Morgan DO
    Curr Biol; 1999 Mar; 9(5):227-36. PubMed ID: 10074450
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin-Cdk.
    Verma R; McDonald H; Yates JR; Deshaies RJ
    Mol Cell; 2001 Aug; 8(2):439-48. PubMed ID: 11545745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex.
    Zachariae W; Schwab M; Nasmyth K; Seufert W
    Science; 1998 Nov; 282(5394):1721-4. PubMed ID: 9831566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase.
    Orlicky S; Tang X; Willems A; Tyers M; Sicheri F
    Cell; 2003 Jan; 112(2):243-56. PubMed ID: 12553912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel CDC34 (UBC3) ubiquitin-conjugating enzyme mutants obtained by charge-to-alanine scanning mutagenesis.
    Pitluk ZW; McDonough M; Sangan P; Gonda DK
    Mol Cell Biol; 1995 Mar; 15(3):1210-9. PubMed ID: 7862115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway.
    Deshaies RJ; Chau V; Kirschner M
    EMBO J; 1995 Jan; 14(2):303-12. PubMed ID: 7835341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Budding yeast RSI1/APC2, a novel gene necessary for initiation of anaphase, encodes an APC subunit.
    Kramer KM; Fesquet D; Johnson AL; Johnston LH
    EMBO J; 1998 Jan; 17(2):498-506. PubMed ID: 9430641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional interaction of 13 yeast SCF complexes with a set of yeast E2 enzymes in vitro.
    Kus BM; Caldon CE; Andorn-Broza R; Edwards AM
    Proteins; 2004 Feb; 54(3):455-67. PubMed ID: 14747994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.